{"id":12340,"date":"2021-03-23T10:35:36","date_gmt":"2021-03-23T09:35:36","guid":{"rendered":"https:\/\/fondation-grenoble-inp.fr\/?post_type=projet&p=12340"},"modified":"2025-04-14T12:58:31","modified_gmt":"2025-04-14T10:58:31","slug":"projet-yales2","status":"publish","type":"projet","link":"https:\/\/fondation-grenoble-inp.fr\/en\/projet\/projet-yales2\/","title":{"rendered":"YALES2 Project: Innovative numerical methods for the conception and optimization of hydraulic turbines"},"content":{"rendered":"
Axe de recherche : <\/strong> Hydrodynamique, turbulence, instabilit\u00e9s, hydroacoustique, interactions fluide structure et contraintes m\u00e9caniques <\/p>\n\n\n\n Correspondants :<\/em> Yann Laurent, General Electric Renewable Energy & Guillaume Balarac<\/a> , Laboratoire du LEGI<\/p>\n\n\n\n 2 th\u00e8ses :<\/strong><\/p>\n\n\n\n 2 Post-Doc :<\/em><\/strong><\/p>\n\n\n\n
> Reconstruction of numerical inlet boundary conditions using machine learning: Application to the swirling flow inside a conical diffuser, Physics of fluids<\/a>
> Reconstruction of proper numerical inlet boundary conditions for draft tube flow simulations using machine learning, Science Direct<\/a>
> Influence of turbulent inlet conditions on the flow inside a bulb turbine draft tube using Large-Eddy Simulations, IOP Science<\/a><\/li><\/ul>\n\n\n\n