
PUF-Based Protocol for Securing Constrained
Devices

Arthur Desuert, Stéphanie Chollet, Laurent Pion and David Hély
Univ. Grenoble Alpes, Grenoble INP, LCIS

F-26000 Valence, France
{firstname.lastname}@lcis.grenoble-inp.fr

Abstract—In networks of smart devices, managing the trust
among devices is a key challenge to prevent malicious intrusions
of rogue agents. One aspect of trust is to ensure the authenticity of
each device. Authentication schemes already exist for resourceful
nodes, but we lack solutions for constrained devices which are
undoubtedly an important part of those networks. In this paper,
we present a new PUF-based authentication protocol for smart
devices with autonomy and cost constraints, which aims at
filling the gap between current authentication protocols and no
authentication at all. We also describe our first implementation
of the protocol using a microcontroller of the NXP LPC55S6x
family, which features secure storage and key generation using a
SRAM PUF. Finally, we present our evaluation of the protocol’s
principle and performances to validate the feasibility of the
solution in real-world applications.

Index Terms—Internet of Things (IoT), Physically Unclonable
Function (PUF), authentication

I. INTRODUCTION

Lights, thermometers, cameras, smart-meters and even re-
frigerators! The number and the diversity of devices we
connect to the Internet is growing everyday, forming the vast
Internet-of-Things space. Those devices collect data from their
surroundings and send them to dedicated platforms in the fog
or the cloud for further processing. They can also act upon
their environment. Using those connected devices, pervasive
applications aim at offering services to users while remaining
invisible to them. Pervasive means at the same time ubiquitous,
ambient, seamless and transparent [1]. Those applications
extend software systems into the physical world to offer an
intelligent environment.

Pervasive applications work in close proximity to the real
world and potentially to human users, with expected deploy-
ment of those applications in domains such as smart-home,
smart-buildings or Industry 4.0. Consequently, it is vital to
integrate security considerations in the development process
to ensure trust in pervasive environments, as any malfunction
or misbehavior would greatly disappoint the final user [1]. This
is quite a challenging task, particularly concerning hardware
security with smart devices highly heterogeneous in terms of
cost, computational power or exposure to external threats.
A first step toward ensuring this hardware security would
be to guarantee the authenticity of those devices from their
manufacturing to their deployment as part of an intelligent
environment. This would avoid the intrusion of counterfeit or

rogue devices which could perturb the pervasive application’s
operations.

Authentication solutions for Internet-of-Things (IoT) al-
ready exist based on the Public Key Infrastructure (PKI)
with the use of asymmetric cryptography, device’s certificates,
micro vaults and secure protocols. They answer to some of
our problems, but they also have limitations: they are glutton
in terms of computational load and memory space which
can negatively affect device’s autonomy, they are not always
easy to deploy and configure, and they are generally designed
for high security needs. Those solutions are ideal for fields
like e-Health or smart-grids. But for less critical applications
which target cost-efficiency, an intermediate solution should
be available which offers an acceptable level of security.

Physically Unclonable Functions (PUF) are quite recent
hardware blocks first introduced in 2001 by Pappu [2]. A
PUF can generate values based on physical imperfections
made during the manufacturing of the PUF structure. Even
with the same base model each created PUF carries its own
imperfections, forming the PUF’s fingerprint which influences
the output of the block. Because this fingerprint is based
on imperfections, it is almost impossible to reproduce the
precise configuration of a given PUF instance which justifies
the unclonable title of the hardware function. Thank to this
property, PUF can be used as a secure generator for an
unique identifier with lower integration costs than traditional
solutions. But this is only one of the possible applications of
this technology which can also be exploited in authentication
protocols. This is precisely our focus in the rest of the paper.

We present a new authentication protocol using PUF tech-
nology for pervasive devices which takes into account potential
constraints like power autonomy or computational speed and
aims for cost-efficiency. We precisely describe the integration
of our protocol in the device’s life-cycle to ensure the device is
genuine and can be trusted. We also discuss the link between
the expected device’s lifespan and the required amount of
authentication data.

This paper is organized as it follows: Section II introduces
some of the existing techniques to authenticate smart devices
and underline the opportunity for lightweight authentication.
Section III presents our global approach for lightweight au-
thentication protocol using PUF technology. Section IV de-
tails the two phases of the protocol. Before the conclusion,
implementation and validation are explained in Section V.

II. BACKGROUND

A. Existing Authentication Techniques

Authentication of smart devices is a hot topic and some
solutions are already commercially available to ensure the
authenticity of devices before and during their operating time
inside an IoT network.

One widely used authentication method involves asymmetri-
cal cryptography certificates, very similar to the method used
to authenticate servers in Web navigation. For each device
to authenticate, an asymmetrical key pair is generated. The
private key part is securely embedded in the device while a
certificate is generated with the public key part. This certificate
can be distributed to any equipment needing to authenticate the
connected device. The authentication procedure is illustrated
by the Fig. 1.

Fig. 1. Authentication with asymmetric keys.

The equipment generates a challenge and sends it to the
device (a). The device ciphers the challenge using its private
key (b) and sends it back (c). Finally the equipment verifies
the challenge using the device’s certificate (d). This method is
efficient because the private key can be generated and stored
inside the device, but it relies on asymmetric cryptography
which performances might not compatible with very con-
strained devices in terms of power, timing or computation
capacity. This is particularly a problem for devices with
autonomy constraints as recurrent authentication could greatly
shorten the device’s lifespan.

To tackle this issue, it is possible to use symmetrical
cryptography for authentication purposes. The principle is
similar to the certificate method: for each device which needs
authentication, a secret key is generated and embedded in the
device in a secure manner. This key needs to be shared with
equipment willing to authenticate the smart device, a gateway
for instance. The equipment can then send a challenge to the
device which ciphers it with its secret key and sends it back
for authentication. Here, the tricky part is sharing the secret
key between multiple devices: secure procedures are required
to protect the key’s confidentiality during its transfer to the
devices. Key revocation and renewal is also a more complex
operation because of the use of one single key for multiple
devices: for instance, if one device is compromised it affects
all the equipment sharing the same secret key until they are
updated with a new key.

In both authentication scenarios, the smart device needs
to securely store some data: either its private key or the

shared secret key. Several solutions exist to ensure the se-
cure storage of such sensitive data. For instance, there are
dedicated microprocessor chips called Secure Element (SE).
A SE is specifically designed to store confidential data and
to realize some cryptographic operations. It includes sensors
to detect intrusion attempts and react accordingly, by erasing
the internal storage for instance. It is also designed to be
tamper proof against hardware attacks such as power side
channel or fault injection attacks. Those security qualities
are often qualified by a certification laboratory and must be
compliant with security standards, evaluated with the Common
Criteria (CC) for instance. One drawback of SE is the extra
cost it induces to the system in terms of components and
engineering [3].

Another solution for secure storage is to use a Micro-
Controller Unit (MCU) with embedded security features like
a secure context, which splits the MCU in two distinct parts:

• a normal context, also called Rich Execution Environment
(REE), where the main applications can run and interact
with the outside world

• and a secure context, also called Trusted Execution
Environment (TEE), where sensitive operations can be
executed and secrets securely stored, with very limited
interactions with the outside world.

Context switches can only happen in well-defined entry/exit
points to prevent illegal accesses. This solution can be easier
to implement but it is less secure than a SE because it doesn’t
include anti-tampering protections [3].

Finally, the development of Physically Unclonable Func-
tions (PUF) technology [4] has led to its use as a lightweight
security feature and authentication protocols have been devel-
oped around it. We detail this in the next section.

B. PUF Technology for Authentication

A Physically Unclonable Function is a hardware block
which reacts to an input stimulus called the challenge by emit-
ting an output stimulus called the response. PUF’s originality
is that its output not only depends on the challenge but also
on some intrinsic properties of the hardware components, such
as the geometry of its transistors or the length of its circuits.
Because those properties mainly depend on manufacturing
process variations, it is statistically highly unlikely or almost
impossible to produce identical PUF, hence its unclonable
property.

PUF also have others characteristics. First, there is the
challenge space accepted by the PUF. It classifies PUF in two
categories: weak PUF and strong PUF. A PUF is classified
as strong if it has a large Challenge-Response Pairs (CRP)
space, qualified as non-enumerable, and this CRP space scales
exponentially with the PUF design size. Another metric of
interest is the error rate, to quantify the PUF responses’
stability. This metric must be as low as possible to minimize
the correction operations needed to have a stable response to a
given challenge. Inter-PUF distance is also critical when using
PUF for authentication purposes. It consists of measuring, for a
given challenge, the distance between several PUF responses.

This allows to check the absence of collision between PUF
responses which could lead to authentication issues. This
metric must be close to 50%, as it represents uniform use
of the response space.

They are several ways to create a PUF, depending on the
integration constraints and required properties. The first PUF
design, presented by R. Pappu in 2001 [2], used a laser and
a specially crafted diffracting material. It was a strong PUF
but it was quite challenging to integrate in electronic systems.
Then, B. Gassend et al. presented in 2002 a silicon PUF [5],
which is created using integrated circuits, making them much
easier to interface with existing hardware. Silicon PUF can be
split in two main categories: delay-based PUF and memory-
based PUF. Delay-based PUF are based on signal propagation
through circuit. Arbiter PUF [5] is an example of this type of
PUF. It is a strong PUF but it requires very precise circuit
routing to ensure optimal operation of the PUF. Memory-
based PUF rely on memory circuits, like the SRAM PUF [6].
The main advantage is the use of already existing hardware to
implement those PUF, but most memory-based PUF are weak
PUF which are less practical than strong PUF.

PUF circuits have some intrinsic security properties: first,
their unclonability which guarantee an almost-nil risk of
duplication. Then, they are often resistant to direct tamper
attacks which can perturb the PUF operation, thus modifying
its responses and prevent any data leak. Finally, PUF are active
circuits so no information is available when the device or the
PUF is powered down, as opposed to non-volatile memories
storing sensitive data. All those properties make PUF circuits
good candidates for a secure storage or a secure secret genera-
tor with a lower integration cost than the previously introduced
solutions. This secure storage function can be exploited in the
design of low-cost authentication protocol offering a decent
security level. A simple example of PUF-based authentication
procedure is presented by G. E. Suh and S. Devadas [7], using
Challenge Response Pairs (CRP), illustrated by Fig. 2.

Fig. 2. Authentication procedure with previously initialized register.

The authentication register contains couples of CRP that
have been stored during a previous operation called the en-
rollment. To authenticate the device, the equipment selects a
challenge in the authentication register and sends it to the
device (a). The device presents the challenge it received to its
internal PUF (b) and sends the corresponding response back
to the equipment (c). Finally, the server checks if the received
response corresponds to the stored response in the register and
validates or not the authenticity of the device (d).

To conclude, authenticating devices using PUF technology
is possible and some research has been done in this direction.
However, some blind spots remain which can prevent the
large scale deployment of those solutions in commercial and
industrial products. First, there is the management of the
authentication register, a critical equipment which registers
the constrained device, then ensures the secure storage of
the gathered authentication data and its availability when
it is needed to authenticate the device. Then, there is the
problematic of authenticity management during the device
lifespan and the amount of CRP needed to do this. Indeed,
in Suh and Devadas’ protocol the challenge and response are
exchanged in the clear. To prevent malicious CRP reuse, the
pair is immediately suppressed after the authentication which
leads to the exhaustion of the device’s authentication data.

III. GLOBAL APPROACH

In this section, we describe our global approach to ad-
dress the subject of PUF-based authentication for constrained
devices. We propose an authentication protocol supporting
register management according to the device life-cycle. The
device is a smart object which can be integrated in the end
user’s environment as part of a pervasive application. As this
device can collect data about the user’s environment or even
modify this environment, it is crucial to authenticate it as a
genuine. This device contains a PUF used to authenticate it in
the system as a low-cost solution in opposition to the classical
authentication solutions based on certificates.

Our protocol is based on three elements as illustrated in
Fig. 3: the device including a PUF, the authentication register
and the end user’s gateway. We propose two phases in the
device life-cyle for ensuring the authentication:

• registration: it is an initialization step to gather authenti-
cation data using the embed PUF of the device. After this
step, the device is commissioned and ready to be used in
a pervasive environment.

• authentication: the device exchanges an extract of authen-
tication data previously gathered in order to be authenti-
cated with the end user’s gateway.

Fig. 3. Principles of the authentication protocol.

During the registration phase, the authentication register has
an open access to the device’s embedded PUF to challenge it

and to generate some CRP in a secure environment. A strong
PUF or a weak PUF with derivation process is required to have
a wide challenge-response space. Once generated, the CRP are
stored by the register in a secure manner and can be shared
to the appropriate gateway. The authentication register can be
managed directly by the device’s manufacturer or delegated to
a trusted third-party.

The authentication phase takes place after the device has
been commissioned and integrated in a user’s environment.
The device reports to a user’s gateway which checks its
authenticity. To do that, the gateway queries the authentication
register for the device’s CRP which are then used by the
authentication protocol.

With this global view, we have precisely defined the par-
ticipants of our authentication protocol, their interactions and
who manages each of them. We have also showed where our
protocol takes place in the device’s life-cycle to ensure the
device’s genuineness. In the next section, we detail further
each phase of the protocol.

IV. AUTHENTICATION PROTOCOL BASED ON PUF

To accurately describe our protocol, we define the following
conventions:

• x||y represents the concatenation of values x and y;
• P (x) represents the response of a device’s PUF to chal-

lenge x;
• H(x) represents the output of a secure hash function

executed on x;
• RMT , GMT and DMT represent messages sent respec-

tively by the register, the gateway and the device with T
indicating the message’s type.

In the next sections, we detail the two phases of our protocol
used to authenticate device with a PUF.

A. Registration Phase

The registration phase is the base of the trust in the device’s
authenticity. Only the smart device and the authentication
register are involved. This phase must be done in a secure
environment and as soon as possible after the device produc-
tion. During this phase the authentication register creates and
securely stores the device’s authentication table, a structure
containing the generated authentication data. The authentica-
tion register starts by computing a unique identifier IDdevice

and sends it to the device using a SAV E message, which is
defined as it follows:

RMSAV E = SAV E||IDdevice (1)

When the device receives this message, it stores the iden-
tifier in its internal memory. In parallel, the authentication
register creates a new authentication table associated with
the identifier. Then, the authentication register begins the
generation of CRP, as illustrated by Fig. 4.

Fig. 4. Registration phase.

The authentication register chooses a positive integer Ci (a),
the initial challenge, and sends it using a INIT message (b),
which is defined by:

RMINIT = INIT ||Ci (2)

The device, when receiving the message, uses the integer
Ci to initialize a counter (c). This counter is used to prevent
rollback attacks and must be stored securely in non-volatile
memory. The device also uses the integer Ci as a challenge
for its PUF system (d). The PUF response is sent back to the
authentication register with a RESP message (e), which is
defined by:

DMRESP = RESP ||P (Ci) (3)

Finally, the authentication register stores the generated CRP
(Ci;P (Ci)) in the device’s authentication table (f). To gener-
ate the next CRP, the authentication register increments the
integer value to obtain Ci+1 (g) and sends this value using
a CHALL message (h), which definition is similar to the
INIT message. When receiving this message, the device uses
the integer as a challenge for its PUF and sends back the
response using a RESP message. The device’s counter is
left untouched. The authentication register can generate the
required amount of CRP by incrementing the challenge integer
and sending CHALL messages.

At the end of the registration phase, the INIT and
CHALL messages must be disabled to prevent unauthorized
generation of CRP which would disclose the device’s authen-
tication data.

B. Authentication Phase

Once the registration phase has been successfully carried
out, the device can be sold and integrated in a pervasive
environment. This is the commissionning transition. Once
in its pervasive environment, the device reports to a user’s
gateway in our global architecture. The authentication phase
takes place between the device and the gateway, with the
support of the authentication register. The authentication is
mutual between the gateway and the device. We assume that
the gateway knows the authentication register and is able to
communicate with it.

The gateway starts by sending to the device a ID REQ
message. The device replies with a ID ANS message, which
is defined by:

GMID ANS = ID ANS||IDdevice (4)

With the device ID, the gateway can query the authentica-
tion register and recover the appropriate authentication table if
the device has been properly registered. This is the handover
transition illustrated in Fig. 3. Then, the gateway follows the
protocol illustrated by Fig. 5.

Fig. 5. Mutual authentication between a gateway and a device.

The gateway selects in the table a challenge Cn and two
responses P (Cn) and P (Cn+1) (a). With these elements, the
gateway computes its authentication message M , defined by
(5), and sends it to the device using a AUTH message (b),
defined by (6). The gateway also saves the device’s ID to keep
track of the devices currently in an authentication procedure.

M = IDdev||Cn||P (Cn)⊕ P (Cn+1) (5)

GMAUTH = AUTH||M ||H(M) (6)

Because the challenges are based on a counter, the device
can compute P (Cn) and P (Cn+1) from Cn. Moreover, we do
not transmit responses in plain text to prevent machine learning
attacks against the PUF [8]. When receiving the message, the
device performs preliminary checks (c) which consist of an
integrity check using the message’s digest and a target ID
check, to ensure the message is intended for the device. If
those checks succeed, an anti-replay check (d) follows, which
compares the provided challenge Cn to the value stored by the
device’s secure counter. The check succeeds if Cn is equal or
greater than the stored value. If one of those checks fails, the
message is dropped. If the message is valid, the device can
compute the gateway’s authenticity proof P (Cn)⊕ P (Cn+1)
using its PUF and compare it to the message’s proof (e). If the
proofs are equal, the gateway can be trusted and the device
stores challenge Cn+4 in its secure counter (f), to avoid replay
attacks. The device then computes its own authentication
message N , defined by (7), and sends it to the gateway with
a AUTH message(g), defined by (8).

N = IDdev||P (Cn+2)⊕ P (Cn+3) (7)

DMAUTH = AUTH||N ||H(N) (8)

Once again, we don’t transmit the responses in plain text
for the underlined reasons. When receiving the message, the
gateway checks its integrity using H(N), then it checks if
IDdev matchs to a device currently in authentication procedure
(h). If one of this checks fails, the message is dropped.
Otherwise, the gateway computes P (Cn+2)⊕P (Cn+3) using
the responses stored in the authentication table and compares
the result with the device’s authenticity proof (i). If it is
equal, the device is authenticated by the gateway. To finish the
authentication procedure, the gateway must delete the entries
Cn to Cn+3 of the authentication table, as they can’t be used
anymore due to the anti-replay counter of the device.

At the end of the authentication phase, if all the steps suc-
ceeded, mutual authentication is reached between the gateway
and the device.

V. IMPLEMENTATION AND VALIDATION

To validate our protocol, we developed a demonstrator with
a single constrained device, a gateway and an authentication
register. With those components, we are able to enroll, then
to authenticate the device. The implementation details are
presented in Section V-A. Then, we used this demonstrator to
gather some metrics in order to evaluate our protocol. Those
results are presented in Section V-B.

A. Implementation

The demonstrator is composed of two elements: a
LPC55S69-EVK development board from NXP playing the
role of the device and a personal computer playing alterna-
tively the role of the authentication register and the role of the
gateway. Communication between those elements is assured
by a serial link with the following properties: 115 200 bauds,
8 data bits and no parity bit. The demonstrator architecture is
illustrated in Fig. 6.

Fig. 6. Demonstrator architecture.

The device is implemented with the LPC55S69 MCU be-
cause it is based on the ARM Cortex-M33 processor which is
designed for embedded applications. Moreover, it is featuring
a PUF subsystem based on SRAM PUF technology with
built-in error correction mechanisms. The SRAM PUF being
a weak PUF, we used the work presented in [9] to design

the equivalent of a strong PUF by combining a weak PUF
and a symmetric encryption algorithm. For the symmetric
encryption algorithm, we choose the Advanced Encryption
Standard (AES) in Electronic Code Book (ECB) mode be-
cause the LPC55S69 also features a cryptographic accelerator,
called Hashcrypt, supporting this algorithm. This choice is
not mandatory and any symmetric algorithm can be used,
with respect to its security and performance attributes. The
architecture of emulated strong PUF is presented in Fig. 7.

Fig. 7. Emulated strong PUF using a weak PUF and symmetric encryption.

In this architecture, the SRAM PUF acts as a secure storage
for the key used by the AES-ECB cipher. The challenges are
sent to the AES subsystem which ciphers them to produce the
responses. Using the emulated strong PUF, the protocol oper-
ations are implementing following the specifications described
in Section IV. The device’s software is written in C, using the
API provided by the NXP Software Development Kit.

The authentication register enrolls the device, then the
gateway checks the authenticity of the device. The software is
written in Python 3, using the pySerial module to enable serial
communication with the device. The authentication table built
by the authentication register is shared to the gateway. This
authentication table is a very sensitive structure. In our work,
we don’t actually concentrate our efforts on the security of
this table. But for an on-field deployment of the protocol in a
pervasive environment, it is essential to take it into account.

B. Validation

To evaluate our protocol, we chose to focus on time and
memory usage metrics. Concerning time metrics, we measured
the time of execution for each exchange of the protocol, an
exchange consisting of a request message and its associated
response message: for instance, during the registration phase,
a CHALL message followed by a RESP message is consid-
ered an exchange. To measure these times, we instrumented
our Python software to track the relevant intervals and export
the results for processing. We measured the execution times
for all the protocol exchanges. The average execution times
are presented in Table I.

TABLE I
AUTHENTICATION PROTOCOL’S TIME METRICS

TIME METRICS

Average INIT/RESP exchange 1.1s
Average CHALL/RESP exchange 3.0ms
Average ID REQ/ID ANS exchange 0.55s
Average AUTH/AUTH exchange 1.1s

During our tests, it can be noticed that the first exchange of
the registration phase takes a significant amount of time com-
pared to subsequent exchanges. This INIT/RESP exchange
initializes the registration phase. During this step the SRAM
PUF is enabled, then the secret key is restored and transmitted
to the AES block. Finally, the challenge is encrypted by the
AES cipher and the response is sent back to the register.
Once this initialization work has been done, the following
CHALL/RESP exchanges only do the challenge encryption
part, explaining the important time difference.

Regarding the measures of the authentication phase, the
AUTH/AUTH exchange is similar in terms of PUF ini-
tialization to the INIT/RESP exchange which explain the
similar execution time. The ID REQ/ID ANS exchange
only requires the reconstruction of the ID using the SRAM
PUF. We judge those time results acceptable for non critical
pervasive devices.

For memory metrics, we gathered the size of our client
application loaded in the device and the size of the variables
requiring a non-volatile storage. A summary of those metrics
is presented in Table II.

TABLE II
AUTHENTICATION PROTOCOL’S MEMORY METRICS.

MEMORY METRICS

Client application 24.8kB
Anti-rollback counter 4B
PUF activation code* 1192B
Device ID recovery code* 52B
Secret key recovery code* 52B
* Variable specific to our PUF implementation.

About the client application’s size the code in charge of the
protocol’s logic takes around 5.7kB of space, the remaining
code being the libraries provided by NXP to ease the devel-
opment on the target. Among those libraries, PUF library and
Hashcrypt library take respectively around 4.9kB and 200B of
space.

The anti-rollback counter is crucial as it constrains the
maximum number of authentications the device can carry out,
constraining the device’s lifespan too. In our implementation
we chose a size of 32 bits for this counter, allowing around
1 billion authentications as the counter is incremented by 4
each time an authentication success. Even at a rate of one
authentication every minute, it would take more than 100 years
to reach the counter’s limit. This is a more than sufficient limit
for a device with a lifespan of 10 to 20 years. It must be noted
that the anti-rollback counter must be stored in a secure part

of the non-volatile memory which prevent illegal access or
tampering of the stored value.

The others variables listed are specific to our implemen-
tation. Precisely, they are specific to the PUF subsystem
developed by NXP. The PUF activation code is produced
at the initialization of the SRAM PUF and is needed each
time the PUF is powered on to restore its internal signature.
The device identifier (ID) and secret key recovery codes are
generated when storing the mentioned values using the PUF
secure storage. Those codes are needed to recover the stored
values from the PUF once it is powered on and correctly
initialized. As those codes don’t leak sensitive information
about the stored values, they can be stored in a non-secure
part of the device’s non-volatile memory.

Finally, we evaluated for different expected lifespans the
amount of CRP needed to authenticate the device with a fre-
quency of one mutual authentication every minute. Combined
with the average registration request time, this allowed us to
estimate the total registration time with our implementation.
Those results are presented in Table III.

TABLE III
TOTAL REGISTRATION TIME DEPENDING ON THE DEVICE’S LIFESPAN.

Device’s lifespan expected (year) 1 5 10
Required amount of CRP 2.1M 11M 21M
Estimated registration time (hour) 1.8 8.8 18

Those results highlight the challenge represented by the
registration phase which need to generate in one time the
necessary authentication data for the whole device’s life. Even
for a one year lifespan, nearly 2 hours of registration time are
needed.

In summary, our protocol presents decent memory metrics
and reasonable authentication time once on the field. The
average registration time is also decent but the potential issue
lies in the number of CRP needed to cover the whole device’s
lifespan. In the next section, we present other researches
around PUF-based authentication.

VI. RELATED WORK

Others protocols using PUF technology have been devel-
oped to achieve lightweight mutual authentication for IoT.
Barbareschi et al. present in [10] an authentication protocol
relying on PUF chains, a new way to generate CRP to ease the
authentication on the device side. In their model they identify
3 equipment involved in the authentication: a trusted third-
party in charge of the enrollment, an authentication equipment
called the verifier and the device to authenticate. But they
don’t integrate their protocol in the device’s life-cycle. Also,
challenges and responses are exchanged in clear during their
verification phase, which could allow modeling attacks against
the device’s PUF.

Van Herrewege et al. present in [11] a lightweight protocol
for RFID readers and tags. They introduce their concept
of reverse fuzzy extractor to reduce the calculations on the
device’s side. Their protocol is based on the exchange of helper

data, which ara data used for the error correction of the PUF’s
response. Like us, they consider 3 players in their model: a
database managed by the token issuer which is the equivalent
of our register, a reader which plays the role of our gateway
and a token which is similar to our smart device. But they
don’t describe how their protocol takes place in the token’s
life-cycle.

A more advanced protocol presented in [12] uses PUF with
asymmetric cryptography to provide both authentication and
confidentiality. They consider a more complex user’s network
than us, with not only the devices and their authentication
server but also higher devices like routers. In their protocol,
the enrollment is done by the authentication server in a secure
way before the device join the network. This can be difficult
to achieve if the server is already managing some devices.
Moreover, this protocol was proven vulnerable by Braeken
in [13]. The author presents the attacks on the protocol and
proposes an alternative scheme which fixes the identified
vulnerabilities, but doesn’t develop further the enrollment
procedure.

In [14], Öztürk et al focus on highly constrained RFID sys-
tems in pervasive environment. They don’t use any encryption
or hash primitive on the device, only two PUF circuits to
respect their constraints. Like us, they designed their protocol
to prevent modeling attacks, deliberately using noisy PUF
responses and other countermeasures to increase the attack’s
difficulty. In their protocol the RFID reader is in charge of the
initialization and enrollment of the token after its production,
and also its authentication when deployed on the field.

Aysu et al. present a protocol which ensure the privacy of
the authenticated devices in [15]. To do so, they don’t rely
on device identifiers like us but they use exhaustive search
in the devices’ authentication data. In their trust model they
consider a trusted server in charge of the enrollment in a secure
environment and then the authentication of the devices. No
information is given about the timing of those phases in the
device’s life-cycle.

VII. CONCLUSION AND PERSPECTIVES

In this paper, we presented the basis of lightweight authen-
tication using the PUF technology. We identified some blind
spots which can prevent the good development and integration
of this kind of authentication in smart devices. Then, we
presented a proposal including a global architecture and its
associated authentication protocol to try on clarify those blind
spots. We realized a demonstrator with a quite recent and ded-
icated to constraint systems NXP LPC55S69 microcontroller
embedding a PUF block to prove the feasibility of the protocol.

Testing the demonstrator, we got reasonable results in terms
of memory consumption and authentication time. This first
step is encouraging us for new researches of lightweight
security integration in devices with the objective of securing
pervasive applications to ensure they can be trusted by users.
However, our protocol still need improvements, on the au-
thentication data handover for instance, before thinking about
a large scale deployment.

AKNOWLEDGMENT

This project has received funding from the Trust Chair of
the Grenoble-INP Fundation.

REFERENCES

[1] C. Escoffier, S. Chollet, and P. Lalanda, “Lessons learned in building
pervasive platforms,” in 2014 IEEE 11th Consumer Communications and
Networking Conference (CCNC), Jan. 2014, pp. 7–12, iSSN: 2331-9860.

[2] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical One-Way
Functions,” Science, vol. 297, pp. 2026 – 2030, 2002.

[3] Global Platform, “The Trusted Execution Environment: Delivering
Enhanced Security at a Lower Cost to the Mobile Market,”
Jun. 2015. [Online]. Available: https://globalplatform.org/wp-
content/uploads/2018/04/GlobalPlatform TEE Whitepaper 2015.pdf

[4] U. Rührmair and D. E. Holcomb, “PUFs at a glance,” in 2014 Design,
Automation Test in Europe Conference Exhibition (DATE), Mar. 2014,
pp. 1–6, iSSN: 1558-1101.

[5] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proceedings of the 9th ACM conference on
Computer and communications security, ser. CCS ’02. New York, NY,
USA: Association for Computing Machinery, Nov. 2002, pp. 148–160.
[Online]. Available: https://doi.org/10.1145/586110.586132

[6] D. E. Holcomb, W. P. Burleson, and K. Fu, “Power-Up SRAM State
as an Identifying Fingerprint and Source of True Random Numbers,”
IEEE Trans. Computers, vol. 58, no. 9, pp. 1198–1210, 2009. [Online].
Available: https://doi.org/10.1109/TC.2008.212

[7] G. E. Suh and S. Devadas, “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” in Proceedings of the
44th Design Automation Conference, DAC 2007, San Diego, CA,
USA, June 4-8, 2007. IEEE, 2007, pp. 9–14. [Online]. Available:
https://doi.org/10.1145/1278480.1278484

[8] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable functions,”
in Proceedings of the 17th ACM conference on Computer and
communications security, ser. CCS ’10. New York, NY, USA:
Association for Computing Machinery, Oct. 2010, pp. 237–249.
[Online]. Available: https://doi.org/10.1145/1866307.1866335

[9] M. Bhargava and K. Mai, “An efficient reliable PUF-based cryptographic
key generator in 65nm CMOS,” in 2014 Design, Automation Test in
Europe Conference Exhibition (DATE), Mar. 2014, pp. 1–6, iSSN: 1558-
1101.

[10] M. Barbareschi, A. De Benedictis, and N. Maz-
zocca, “A PUF-based hardware mutual authentication pro-
tocol,” Journal of Parallel and Distributed Computing,
vol. 119, pp. 107–120, Sep. 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731518302582

[11] A. Van Herrewege, S. Katzenbeisser, R. Maes, R. Peeters, A.-R. Sadeghi,
I. Verbauwhede, and C. Wachsmann, “Reverse Fuzzy Extractors: En-
abling Lightweight Mutual Authentication for PUF-Enabled RFIDs,”
in Financial Cryptography and Data Security, ser. Lecture Notes in
Computer Science, A. D. Keromytis, Ed. Berlin, Heidelberg: Springer,
2012, pp. 374–389.

[12] U. Chatterjee, R. S. Chakraborty, and D. Mukhopadhyay, “A PUF-
Based Secure Communication Protocol for IoT,” ACM Transactions on
Embedded Computing Systems, vol. 16, no. 3, pp. 67:1–67:25, Apr.
2017. [Online]. Available: https://doi.org/10.1145/3005715

[13] A. Braeken, “PUF Based Authentication Protocol for IoT,” Symmetry,
vol. 10, no. 8, p. 352, Aug. 2018, number: 8 Publisher:
Multidisciplinary Digital Publishing Institute. [Online]. Available:
https://www.mdpi.com/2073-8994/10/8/352

[14] E. Öztürk, G. Hammouri, and B. Sunar, “Towards Robust Low Cost
Authentication for Pervasive Devices,” in 2008 Sixth Annual IEEE
International Conference on Pervasive Computing and Communications
(PerCom), Mar. 2008, pp. 170–178.

[15] A. Aysu, E. Gulcan, D. Moriyama, P. Schaumont, and M. Yung, “End-
To-End Design of a PUF-Based Privacy Preserving Authentication
Protocol,” in Cryptographic Hardware and Embedded Systems – CHES
2015, ser. Lecture Notes in Computer Science, T. Güneysu and H. Hand-
schuh, Eds. Berlin, Heidelberg: Springer, 2015, pp. 556–576.

