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Abstract. Connected devices are deployed at a rapid rate and in broad domains like home automation or industry, forming the
Internet of Things. Those devices need to be secure and trusted to prevent malicious use. However some connected devices
are low-cost, memory constrained, power constrained, etc.. This greatly limits the deployment of usual security solutions. As
the absence of security is not acceptable, it is necessary to search for lightweight security solutions adapted to such devices.
Physical Unclonable Function (PUF) technology can support new lightweight security mechanisms and several lightweight
security protocols using this technology have been proposed over the years. Those protocols look promising, however there are
still some unaddressed challenges which have slowed down a large scale adoption. This article presents the design of a new
authentication protocol for constrained devices which takes into account those challenges. This protocol is implemented on a
hardware platform used for connected devices development, which is then used to evaluate the security level and performances
of the protocol in a realistic scenario. This evaluation shows that the protocol is secure and can meet industrial time constraints.
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1. Introduction

With the past and expected growth of the Internet of Things (IoT) and its applications [1], connected devices are
largely available today. Those devices gather data from their surroundings and exchange them with remote platforms
in the fog and/or in the cloud for further processing. Moreover, some devices are able to physically interact with
their environment. Those devices capabilities can be used by pervasive applications to provide services to users
while remaining invisible. In fact, those applications extend software systems into the physical world to offer smart
environments (i.e., at the same time ubiquitous, ambient, seamless and transparent) [2].

Pervasive applications work in close proximity to the physical world and potentially to human users, with ex-
pected deployment of those applications in domains such as smart-home, e-Health or Industry 4.0. Consequently, it
is vital to integrate security considerations into the development process to ensure trust in pervasive environments, as
any malfunction or misbehavior would not only disappoint the final user [2] but could lead to hazardous or harmful
situations. An important security aspect is to guarantee the authenticity of connected devices from their manufac-
turing to their deployment as part of a smart environment and to allow this authenticity to be checked by pervasive
applications working with the devices. This would avoid the intrusion of counterfeit or rogue devices which could
perturb the operation of pervasive applications.
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To authenticate IoT devices, it is possible to use protocols and standards commonly deployed on the Internet like
HTTP1, MQTT2, AMQP3, CoAP4, etc. Most of these protocols use the Transport Layer Security (TLS) protocol [3]
or the Datagram Transport Security Layer (DTLS) [4] to secure communications. They are usually associated to
the Public Key Infrastructure (PKI) which manages authentication with X.509 digital certificates and asymmetric
cryptography [5, 6]. Those solutions have already been deployed experimentally for pervasive applications [7], they
bring a good security level but they are not adapted to some devices as they have a non negligible memory footprint,
involve heavy computations, require the secure storage of long-term secrets and are costly to deploy. They are well
suited for high-end devices, but not for low-cost and constrained devices. Complementary solutions are needed to
perform lightweight authentications with a correct security level.

To tackle this issue, Physical Unclonable Functions (PUF) are a promising technology. First introduced by
Pappu [8], a PUF is a hardware system which generates a unique fingerprint when it is manufactured. Like a func-
tion, a PUF accepts an input and generates a corresponding output which is influenced by the PUF fingerprint. This
allows the identification of a PUF instance. PUF are interesting because they act as a secure storage for their fin-
gerprint while using more simple circuits than dedicated storage solutions. It is very hard to duplicate a given PUF
because its fingerprint is generated by unpredictable manufacturing noise. For those reasons, researches are con-
ducted on this technology. One research area is the use of PUF to develop lightweight security protocols compatible
with constrained devices, identification and authentication protocols for instance. Yet the domain is vast and among
the various propositions, some challenges are still rarely addressed yet they are crucial to ensure the deployment in
commercial solutions.

This article examines those challenges and presents the design of a new PUF-based authentication protocol for
constrained devices. The protocol key features are the clear definition of involved actors, its integration into the de-
vice life-cycle from manufacturing to field deployment and its compatibility with industrial time constraints thanks
to a new approach in the management of authentication data.

This article is organized as it follows: Section 2 presents current authentication schemes and their limitations
in the context of low-cost constrained devices, then introduces the base principle and open challenges in using
PUF technology for lightweight authentication. Section 3 presents the global approach to address the identified
challenges, approach which led to the design of a new protocol. Section 4 explains how the protocol has been
implemented on a hardware target and the design choices. Before the conclusion, Section 5 presents the evaluation
of the protocol security level and performance metrics.

2. Problem definition

2.1. Authentication in IoT context

Authentication of smart devices is a hot topic and a very active research field, particularly when the authentication
takes place between a low-cost resource-constrained device and a resource-rich server, as highlighted by the plurality
of proposed protocols [9]. The devices constraints make the implementation of cryptographic primitives and security
functions a challenging task. However, those constraints are rarely quantified which makes it difficult to clearly
grasp those limits. In an effort to clarify this situation, this article uses the terminology defined by the Internet
Engineering Task Force (IETF) for constrained devices in the RFC 7228 [10]. This RFC introduces three classes of
constrained devices based on their embedded storage for code and data:

– Class 0 (C0) is the most constrained class with less than 100 KiB of code and less than 10 KiB of data,
– Class 1 (C1) is an intermediate level with around 100 KiB of code and around 10 KiB of data,
– Class 2 (C2) is the less constrained class with around 250 KiB of code and 50 KiB of data.

1https://datatracker.ietf.org/doc/html/rfc7231
2https://mqtt.org/
3https://www.amqp.org/
4https://datatracker.ietf.org/doc/html/rfc7252
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Fig. 1. One way authentication with asymmetric keys.

A device embedding more storage capabilities than class 2 limits is not considered constrained in terms of storage,
an example being the Raspberry Pi boards5. However, such device can be constrained by limited energy supply. The
RFC defines classes of energy limitation defined by the type of limitation the device has to deal with. The main
target of this article is class 0 devices as they are the ones in need of lightweight solutions for authentication. Before
presenting such solutions, two classical authentication methods are presented to understand their incompatibility
with constrained devices.

The first method relies on asymmetric cryptography with the Public Key Infrastructure (PKI). Asymmetric cryp-
tography works with key-pairs composed of a private key and a public key. The PKI is a set of norms, infrastructures
and processes which aim at ensuring trust in public keys. To do so, additional data are associated to public keys
thank to standards like X.509 certificates [5]. For each device to authenticate, a key-pair is generated. The private
key is securely embedded in the device while the public key is inserted in a certificate describing the device identity.
In this setup, authentication protocols have been normalized by the National Institute of Standards and Technology
(NIST) [11]. A simplified version of a one-way authentication is illustrated by Fig. 1.

In Fig. 1, the server generates a random number used once (nonce) RS and sends it to the device (a). When
receiving RS , the device generates a random nonce RD and signs the concatenation (||) of both numbers with its
private key (b). The device then sends back RD and the signature (c). It is assumed that the server recovers the
device certificate which contains the public key and checks its validity using an appropriate way, as those steps are
not illustrated in this example. Finally, using the nonce of the device and its public key, the server can check the
signature and validate or not the authentication. This method is scalable because each device is assigned a private
key and the associated public key can be distributed on large scales using the dedicated infrastructures of the PKI.
However, asymmetric cryptography relies on heavy computations which is often incompatible with constrained
devices in terms of power or timing. This method implies non negligible deployment costs, to either set up a private
infrastructure or register to an existing one.

The second authentication method uses symmetric cryptography. The principle is similar to the previous method:
for each device which needs authentication, a symmetric key is generated and embedded in the device in a secure
manner. This key needs to be shared with servers willing to authenticate the smart device. A server can then send
a challenge to the device which ciphers it with the shared key and sends it back for authentication. Symmetric
cryptography operations are less costly in terms of computations than asymmetric operations, but the challenging
part is sharing the secret key between the device and the server: it is possible to use a single key for several devices
and servers but if only one device is compromised the whole network becomes vulnerable. A more secure way is
to assign a unique key to every pair of device and server which need to communicate, but this requires additional
management. In the end, the deployment costs are non negligible just like the asymmetric method.

Additionally, in both methods the smart device needs to securely store some data: either its private key or the
shared secret key. Several solutions exist to ensure the secure storage of such sensitive data. They all come with
different security levels and different costs. For instance, there are dedicated microprocessor chips called Secure El-
ement (SE). A SE is specifically designed to store confidential data and to realize some cryptographic operations. It

5https://www.raspberrypi.org/
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includes sensors to detect intrusion attempts and react accordingly, by erasing the internal storage for instance. It is
designed to be tamper proof against hardware attacks such as power side channel [12] or fault injection attacks [13].
Those security properties are often qualified by a certification authority and must be compliant with security stan-
dards, such as the Common Criteria (CC) for instance. While with SE, one can reach a very high security level, it
induces an extra costs to the system in terms of components and engineering [14].

Another solution for secure storage is to use a MicroController Unit (MCU) with embedded security features like
a secure context, which splits the MCU in two distinct parts:

– a normal context, also called Rich Execution Environment (REE), where the main applications can run and
interact with the outside world;

– and a secure context, also called Trusted Execution Environment (TEE), where sensitive operations can be
executed and secrets securely stored with very limited interactions with the outside world.

Context switches can only happen in well-defined entry/exit points to prevent illegal accesses. This solution can be
easier to implement but it is less secure than a SE because it does not always include anti-tampering protections [14].

Finally, combining a classical authentication method with a secure storage solution is often not viable for low-cost
constrained devices. To tackle this issue, new technologies are being considered like Physical Unclonable Functions
(PUF) [15].

2.2. PUF technology for authentication

A Physical Unclonable Function (PUF) is a hardware circuit which reacts to an input stimulus named the chal-
lenge by emitting an output stimulus named the response. The originality of a PUF is that its output not only de-
pends on the challenge but on some intrinsic properties of the hardware circuits as well, such as the geometry of its
transistors or the size of the hardware structure. Because those properties mainly depend on manufacturing process
variations, it is statistically highly unlikely or almost impossible to produce identical PUF, hence its unclonable
property.

PUF have others characteristics. First, there is the challenge space accepted by the PUF. It classifies PUF in
two categories: weak PUF and strong PUF. A PUF is classified as strong if it has a large Challenge-Response
Pairs (CRP) space, qualified as non-enumerable, and this CRP space scales exponentially with the PUF design size.
Otherwise it is a weak PUF which has a limited CRP space, sometimes made up of a unique CRP. Another metric
of interest is the error rate, to quantify the stability of PUF responses. This metric must be as low as possible to
minimize the correction operations needed to have a stable response to a given challenge. Inter-PUF distance is
critical as well when using PUF for authentication purposes. It consists of measuring, for a given challenge, the
distance between several PUF responses. This allows to check the absence of collision between PUF responses
which could lead to authentication issues. This metric must be close to 50%, as it represents uniform use of the
response space.

They are several ways and technologies to create a PUF, depending on the integration constraints and required
properties. The first PUF design, presented by R. Pappu in 2001 [8], used a laser and a specially crafted diffracting
material. It was a strong PUF but it was quite challenging to integrate in electronic systems. Then, B. Gassend et
al. presented in 2002 a silicon PUF [16], which is created using integrated circuits, making them much easier to
interface with existing hardware. Silicon PUF can be split in two main categories: delay-based PUF and memory-
based PUF. Delay-based PUF are based on signal propagation through circuit. Arbiter PUF [16] is an example
of this type of PUF. It is a strong PUF but it requires very precise circuit design methodology to ensure optimal
operation of the PUF. Memory-based PUF rely on memory circuits, like the SRAM PUF [17]. The main advantage
is the use of already existing and available hardware to implement those PUF, but unfortunately most memory-based
PUF are weak PUF which are less practical than strong PUF regarding authentication.

PUF circuits have some intrinsic security properties: first, their unclonability which guarantees an almost-nil risk
of duplication. Then, they are often resistant to direct tamper attacks which can perturb the PUF operation, thus
modifying its responses and preventing any data leak. Finally, PUF are active circuits, so no information is available
when the device or the PUF is powered down, as opposed to non-volatile memories storing sensitive data. All
those properties make PUF circuits good candidates for a secure storage or a secure secret generator with a lower
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integration cost than the previously introduced solutions in Section 2.1. This secure function can be exploited in the
design of low-cost authentication protocols offering a sufficient security level. A simple example of a PUF-based
authentication procedure using Challenge-Response Pairs (CRP) is presented by G. E. Suh and S. Devadas in [18]
and illustrated by Fig. 2.

Fig. 2. Authentication procedure with previously initialized register.

The authentication register contains several CRP which were stored during a previous operation called the reg-
istration. To authenticate the device, the server selects a challenge in the authentication register and sends it to the
device (a). The device presents the received challenge to its internal PUF (b) and sends the corresponding response
back to the server (c). Finally, the server checks if the received response corresponds to the stored response in the
register and validates or not the authenticity of the device (d).

Lightweight authentication using PUF technology is an active research field as shown by the plurality of proposed
protocols in the past decade [19]. However, some challenges remain mostly unaddressed and constitute an obstacle
to large-scale deployment in commercial and industrial products. Those challenges include:

– the integration into the device life-cycle. It is crucial to know when each phase has to be performed, particu-
larly the registration phase which establishes trust in the device.

– the management of the authentication register. It is a critical equipment with the sensitive task of first
registering devices in a secure environment and then ensuring the security and availability of those devices
authentication data.

– the management of authentication data. This mostly concerns protocols which progressively delete authen-
tication data, like Suh and Devadas’ protocol. Such protocols need to address the case of a total exhaustion
of authentication data. Moreover, such protocols need to gather enough authentication data to cover the whole
device lifespan, which impacts the registration phase.

3. Methodology

3.1. Global approach

Connected devices are becoming more common in several environments of human users: their home, their work-
place, their city, etc. Pervasive applications rely on those devices to collect data or even to act upon the physical
world to provide services to those users. It is then crucial to ensure that those devices can be trusted. A first step
toward this goal is the authentication of devices. In this article, it is assumed that for each environment there is
an equipment dedicated to the management of connected devices located in the fog [20]. This equipment is called
gateway in the rest of the article. This gateway acts as an intermediary between devices and pervasive applications,
with the ability to autonomously authenticate devices. Focusing on constrained devices, it is assumed that each de-
vice contains a PUF and each manufacturer of constrained devices manages an authentication register linked with
those PUF. Based on those assumptions, this article proposes a new lightweight protocol, based on PUF, which en-
ables mutual authentication between a gateway and a constrained device. Moreover, this protocol takes into account
the identified limitations of previous protocols. In particular, the protocol is integrated into the device life-cycle; it
clearly defines the entity in charge of the authentication register management and it offers a secure procedure to
generate new authentication data while the device remains integrated in its environment.
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This protocol includes three elements as illustrated in Fig. 3: the constrained device embedding a PUF, the users’
environment gateway and the manufacturer’s authentication register. The protocol features three phases integrated
into the device life-cycle:

– registration: it is an initialization phase realized right after the device manufacturing. The goal is to gather
authentication data using the embedded PUF of the device. After this phase, the device is ready to be integrated
in the users’ environment and used by pervasive applications.

– authentication: While a device is deployed in the users’ environment and a pervasive application needs to in-
teract with it, the device and the gateway exchange previously gathered authentication data in order to mutually
authenticate.

– secure refill: This phase is triggered autonomously when a lack of authentication data is detected. The de-
vice and the gateway mutually authenticate, then open a secure channel, allowing the gateway to gather new
authentication data from the device while it remains in the users’ environment.

Fig. 3. Principles of the authentication protocol.

During the registration phase, the authentication register has an open access to the embedded PUF of the device
to challenge it and to generate CRP in a secure environment. A strong PUF is required to have a wide challenge-
response space. Once generated, the CRP are stored by the register in a secure manner and can be securely shared
with the appropriate gateway. At the end of the registration phase, direct access to the PUF must be restrained. The
authentication register can be either managed by the device manufacturer or delegated to a trusted third-party.

The authentication phase takes place after the device has been commissioned and integrated in the users’ envi-
ronment. The device reports to a gateway which checks its authenticity. To do that, the gateway queries the authen-
tication register for the CRP of the device which are then used by the authentication protocol.

The secure refill phase takes place when the device authentication data are almost exhausted, after repeated
use of the authentication phase. The gateway initiates an authentication and key derivation protocol which, when
successfully completed, establishes a secure link between the device and the gateway. On the device side, the PUF
can only be challenged through the secure link. At the end of the phase, the secure link is closed and the PUF access
is restrained again.

3.2. Authentication protocol based on PUF

To accurately describe the protocol, the following conventions are used:

– x||y represents the concatenation of values x and y.
– x⊕ y represents the bit-wise exclusive OR (XOR) of values x and y.
– P(x) represents the response of a device PUF to challenge x.
– H(x) represents the output of a secure hash function executed on x.
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Fig. 4. Registration phase.

– C(x; K = y) represents the output of a secure symmetrical cipher executed on the plaintext x using y as a key.
– RMT , GMT and DMT represent messages sent respectively by the register (R), the gateway (G) and the device

(D) with T indicating the message type.

The presentation of the process starts with the the two phases used to authenticate a device with a PUF, which are
detailed in the section below, and then the secure refill phase is explained.

3.2.1. Registration phase
The registration phase is the base of the trust in the device authenticity. Only the smart device and the authenti-

cation register are involved. This phase must be done in a secure environment as soon as possible after the device is
manufactured. During this phase the authentication register creates and securely stores the device authentication ta-
ble, a structure containing the generated authentication data. The authentication register starts by assigning a unique
identifier IDdevice to the device. This identifier can be either generated by the PUF of the device, as the response
to a fixed challenge, or generated by the authentication register and shared with the device which needs to store
it. The authentication register creates a new authentication table associated with the identifier. Then, it begins the
generation of CRP, as illustrated by Fig. 4.

The authentication register chooses a positive integer Ci (a), the initial challenge. As the integer will be used by
the device, this choice must take into account the way integers are handled by the device. If IMAX represents the
greatest positive integer the device can handle, it is advised to choose Ci in the interval {0; IMAX×0.1}. This integer
Ci is then sent to the device using a INIT message (b), which is defined by Eq. (1).

RMINIT = INIT ||Ci (1)

The device, when receiving the message, uses the integer Ci to initialize a counter (c). This counter is used
to prevent rollback attacks and must be stored in non-volatile memory. The device also uses the integer Ci as a
challenge for its PUF system (d). The PUF response is sent back to the authentication register with a RES P message
(e), which is defined by Eq. (2).

DMRES P = RES P||P(Ci) (2)

Finally, the authentication register stores the generated CRP (Ci; P(Ci)) in the device authentication table (f). To
generate the next CRP, the authentication register increments the integer value to obtain Ci+1 (g) and sends this
value using a CHALL message (h), whose definition is similar to the INIT message. When receiving this message,
the device uses the integer as a challenge for its PUF and sends back the response using a RES P message. The
counter of the device is left unchanged. The authentication register can generate the required amount of CRP by
increasing the challenge integer and sending CHALL messages.
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Fig. 5. Mutual authentication between a gateway and a device.

To close the registration phase, the register sends a END message to the device. This restrains the processing
of the INIT and CHALL messages to prevent unauthorized generation of CRP which would disclose the device
authentication data.

3.2.2. Authentication phase
Once the registration phase has been successfully carried out, the device can be sold and integrated in the users’

environment to be used by pervasive applications. This is the commissioning transition. Once deployed, the device
reports to a gateway. The authentication phase takes place between the device and the gateway, with the support of
the authentication register. The objective is to reach mutual authentication between the gateway and the device. It
is assumed that the gateway knows the authentication register and is able to authenticate and securely communicate
with it.

The gateway starts by sending to the device a ID_REQ message. The device replies with a ID_ANS message,
which is defined by Eq. (3).

GMID_ANS = ID_ANS ||IDdevice (3)

With the device ID, the gateway can query the authentication register and recover the appropriate authentication
table if the device has been properly registered. This is the handover transition illustrated in Fig. 3. Then, the gateway
follows the protocol illustrated by Fig. 5.

The gateway selects in the authentication table a challenge Cn and two responses P(Cn) and P(Cn+1) (a). With
these elements, the gateway computes its authentication message M, defined by Eq. (4). The two responses are
combined with a XOR operation to avoid their transmission in plaintext and prevent PUF modeling attacks. This
point is further discussed in Section 5.1. M is then sent to the device using a AUT H message (b), defined by Eq. (5).
The gateway saves the device ID to keep track of the devices currently in an authentication procedure.

M = IDdev||Cn||P(Cn)⊕ P(Cn+1) (4)

GMAUT H = AUT H||M||H(M) (5)

Because the challenges are based on a counter, the device can compute P(Cn) and P(Cn+1) from Cn. When
receiving the message, the device performs preliminary checks (c) which consist of an integrity check using the
message digest and a target ID check, to ensure the message is intended for the device. If those checks succeed, an
anti-replay check (d) follows, which compares the provided challenge Cn to the value stored by the counter of the
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device. The check succeeds if Cn is equal to or greater than the stored value. If one of those checks fails, the message
is dropped. If the message is valid, the device computes the proof of authenticity of the gateway P(Cn)⊕ P(Cn+1)
using its PUF and compares it to the proof included in the message (e). If the two proofs match, the gateway can be
trusted and the device stores challenge Cn+4 in its counter (f), to avoid replay attacks. The device then computes its
own authentication message N, defined by Eq. (6), and sends it to the gateway with a AUT H message(g), defined
by Eq. (7).

N = IDdev||P(Cn+2)⊕ P(Cn+3) (6)

DMAUT H = AUT H||N||H(N) (7)

When receiving the message, the gateway checks its integrity using H(N), then it checks if IDdev corresponds to
a device currently in authentication procedure (h). If one of those checks fails, the message is dropped. Otherwise,
the gateway computes the proof P(Cn+2) ⊕ P(Cn+3) using the responses stored in the authentication table and
compares the result with the device proof of authenticity (i). If the proofs match, the device is authenticated by
the gateway. To finish the authentication procedure, the gateway must delete the challenges Cn to Cn+3 and their
associated responses of the device authentication table, as the anti-replay counter of the device prevents their reuse.

At the end of the authentication phase, if all the steps succeeded, mutual authentication is reached between the
gateway and the device and four CRP are removed from the device authentication table.

3.2.3. Secure refill phase
To perform the authentication, CRP are used and then permanently deleted which leads to the exhaustion of the

available authentication data for a given device. To prevent the total exhaustion of a device authentication data, as
it would mean the impossibility to further authenticate the device, the protocol includes a third phase allowing the
secure refill of authentication data without the need to take the device off the users’ environment. A minimum of
one CRP is needed to carry out the secure refill phase.

First, the gateway selects in its table a challenge Cn and the corresponding response P(Cn). With these elements
the gateway computes an authentication message M′, defined by Eq. (8). The ciphered P(Cn) plays the role of a ran-
dom value (also called nonce). However, P(Cn) does not have to be explicitly transmitted as the device can compute
it with its PUF, which reduces the communication cost. The proof M′ is sent to the device using a REFILL_AUT H
message, defined by Eq. (9). The gateway saves the device ID in an internal structure to keep track of devices in a
secure refill phase.

M′ = IDdev||Cn||C(P(Cn); K = P(Cn)) (8)

GMREFILL_AUT H = REFILL_AUT H||M′||H(M′) (9)

When receiving the message, the device performs the preliminary checks like a classical authentication procedure.
Only the control of the proof of authenticity differs, as the device needs to cipher P(Cn) using the symmetric cipher
used by the gateway. If the proof of the gateway is valid, the device stores P(Cn) in its volatile memory and computes
its own authentication message N′, defined by Eq. (10). Then, the device sends back a REFILL_AUT H message
defined by Eq. (11).

N′ = IDdev||C(Cn; K = P(Cn)) (10)

DMREFILL_AUT H = REFILL_AUT H||N′||H(N′) (11)
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When receiving the message, the gateway performs the necessary checks to ensure that the message is valid and
the device authenticity proof is correct. If every check completes with success, the gateway and the device are now
mutually authenticated and they share the secret P(Cn). This secret is used as a key for a symmetric cipher used to
protect the next part of the refill procedure.

Once mutual authentication is reached the gateway can use the INIT and CHALL messages of the registration
phase, enciphered with the shared secret. The device deciphers each message, computes the response associated to
the given challenge, creates a RES P message with the response then enciphers it and sends it back. There is only
one additional constraint compared to the initial registration phase: the gateway must choose an initial challenge
greater than the value of the device counter, to maintain the anti-replay protection. Once a sufficient number of new
CRP have been generated, the gateway terminates the refill phase with a final END message to the device. This
triggers the removal of the shared secret on both sides.

To summarize, the protocol is made up of the following three phases:

– registration: this initial setup phase register devices and must be done in a secure environment.
– authentication: this phase provide lightweight mutual authentication while the device is deployed in the users’

environment. Basic operations like XOR and additions are used for optimized runs on constrained devices.
– secure refill: this phase performs a new registration while the device is deployed in the users’ environment.

A more robust and standardized security principle is used with symmetric cryptography, which increases the
footprint compared to the authentication phase but it remains compatible with constrained devices.

4. Prototyping

To validate the protocol, a demonstrator was developed with a single constrained device, a gateway and an au-
thentication register. With those components, it is possible to register the device, to authenticate it and to securely
generate new authentication data.

The demonstrator is composed of two elements: a LPC55S69-EVK development board from NXP playing the
role of the device and a personal computer playing alternatively the role of the authentication register and the role
of the gateway. Communication between those elements is assured by a serial link with the following properties:
115 200 bauds, 8 data bits and no parity bit. The demonstrator architecture is illustrated in Fig. 6.

Fig. 6. Demonstrator architecture.

The device is implemented with a LPC55S69 microcontroller. This microcontroller is based on the ARM Cortex-
M33 processor which is designed for IoT and embedded applications. Moreover, it is featuring a PUF subsystem
based on SRAM PUF technology with built-in error correction mechanisms. The SRAM PUF being a weak PUF, the
work presented in [21] is used to design the equivalent of a strong PUF by combining a weak PUF and a symmetric
cipher. For the cipher, the Advanced Encryption Standard (AES) in Electronic Code Book (ECB) mode with an
input/output block size of 128 bits and a key size of 128 bits is used. The LPC55S69 features a cryptographic
accelerator, called Hashcrypt, supporting this algorithm with these parameters. This choice is not mandatory and any
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symmetric cipher can be used, with respect to its security and performance attributes. The result of this combination
is an emulated strong PUF accepting 128 bits challenges and computing 128 bits responses. The architecture of the
emulated strong PUF is presented in Fig. 7.

Fig. 7. Emulated strong PUF using a weak PUF and symmetric encryption.

In this architecture, the SRAM PUF acts as a secure storage for the key used by the AES-ECB cipher. The
challenges are sent to the AES subsystem which enciphers them to produce the responses. Using the emulated strong
PUF, the protocol operations are implemented following the specifications described in Section 3.2. The device
software is written in C, using the interfaces provided by the NXP Software Development Kit.

The authentication register enrolls the device, then the gateway checks the authenticity of the device. The PC
software is written in Python 3, using the pySerial module to enable serial communication with the device. The
authentication table built by the authentication register is shared with the gateway. This authentication table is a very
sensitive structure. The global security (storage, remote access and administration) of this register is outside the
scope of this article but it is essential to take it into account when planning an on-field deployment of the protocol.

5. Protocol evaluation

5.1. Security

Before presenting the security features of the protocol, the perimeter and attack model are defined. The security
evaluation is focused on the device field use which covers the authentication and secure refill phases as illustrated by
Fig. 3. It is supposed that the registration phase is performed in a secure environment. During field use it is supposed
that the device and the gateway communicate over an insecure channel. Finally, it is supposed that the authentication
register can be trusted, it holds an initial set of the device authentication data and it can securely communicate with
the gateway. Concerning the attacker, his/her main goals are to successfully perform an authentication with a rogue
equipment which can impersonate either a device or a gateway and to disturb the smooth operation of the protocol.
To do so, it is supposed that the attacker follows the Dolev-Yao model [22] which means he/she can eavesdrop on
the channel, intercept messages exchanged on the channel, replay them and create new messages.

Considering those hypothesis, the protocol has the following security features:

– Authentication of the device. A device is authenticated by the gateway only if it is able to present the appro-
priate authenticity proof composed of responses from the device PUF, in both the authentication phase and the
secure refill phase. Without the device PUF, it is not possible to forge a valid proof.

– Authentication of the gateway. A gateway is authenticated by the device only if it can present an authenti-
cation proof composed of the device PUF responses. Except for the device which possesses the PUF, those
responses are only known by the authentication register which performed the registration of the device and by
the equipment trusted by the authentication register to have access to those data. If a gateway is in possession of
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the device PUF responses, it means the gateway is trusted by the authentication register in charge of the device
and can be trusted by the device itself. This is the case for both the authentication and secure refill phases.

– Resistance against replay attacks. Replay attacks are countered on the device side thanks to the counter
which is updated for each valid authentication message received. An old valid message will fail the anti-replay
check and thus will be dropped by the device. The same reasoning is valid for the secure refill phase, as the
secure counter is updated when a valid authentication is received. On the gateway side, there is no individual
counter associated to each device but as the device authentication table is progressively cleared of used CRP, a
replayed message will not pass the check.

– Protection against denial of service (DoS) attacks. Denial of Service attacks against a device aim at perturb-
ing its operation by flooding it with protocol messages. As the protocol requires a gateway to first authenticate
when sending a message to a device, spam messages cannot achieve this. Therefore they cannot trigger further
processing and the emission of a response by the device, which mitigates the denial of service. DoS attacks
against a gateway are more delicate, as the gateway keeps track of the devices currently authenticating and only
accept messages from those devices.

– Protection against machine learning attacks. Machine learning attacks aim at generating a numerical model
of a given PUF instance using a subset of its CRP, a model which can correctly predict the PUF responses
to arbitrary challenges with high probability [23]. To mitigates this threat, direct access to the PUF interface
is deactivated once the registration phase is completed and reactivated only during the secure refill phase,
after a successful authentication. Moreover, PUF responses are never exchanged in the clear to prevent passive
collection of CRP by an eavesdropper. Those design choices increase the difficulty for an attacker to collect
the adequate amount of CRP needed to successfully model the PUF.

– Confidentiality of the refill phase. The confidentiality relies on the use of a secure cipher and a temporary
shared secret, similarly to the method used by the TLS Record protocol [3]. The shared secret is never ex-
changed in clear text and is linked to the device authenticity as it is built from a PUF response.

5.2. Memory footprint

To assess if the protocol met its lightweight expectations, the protocol memory footprint was gathered and com-
pared to another PUF-based authentication protocol [24], also implemented on a microcontroller. Memory footprints
of a Transport Layer Security (TLS) library for embedded systems [25] were included as well to act as a reference
of commercial authentication solutions. Other PUF-based protocols [26] could not be included as they were not
implemented on a microcontroller target. The memory footprints comparison is presented in Table 1.

Table 1
Comparison of authentication protocols memory footprints.

Protocol Memory footprint (kB)

This article’s protocol 13
Aysu’s protocol [24] 8.1
Mbed TLS 1.3 with symmetric authentication [25] 23
Mbed TLS 1.3 with asymmetric authentication [25] 53

Considering an hypothetical constrained device with 50 kB of memory dedicated to code, which can be considered
a class 0 device, deploying a PUF protocol would leave more than 70% of memory space for application code. The
TLS library with symmetric authentication could be deployed on such a device, leaving a bit more than 50% to
application code, but the TLS library with asymmetric authentication could not be deployed at all. Those results
illustrate the lightweight nature of PUF-based authentication protocols relative to the classical solutions.

5.3. Communication costs

The communication costs of the protocol were evaluated and compared to similar PUF-based protocols [24,
26], as well as the TLS library still acting as a reference. The communication cost is defined as the length of
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Table 2
Comparison of authentication protocols communication costs during the authentication phase.

Protocol Communication cost (B)

This article’s protocol authenticator 53
device 49
total 102

Aysu’s protocol [24] authenticator 32
device 271
total 303

Barbareschi’s protocol [26] authenticator 16
device 16
total 32

Mbed TLS 1.3 with symmetric authentication [25] total 381

Mbed TLS 1.3 with asymmetric authentication [25] total 1371

emitted messages. Depending on the communication media, emitting messages can be more energy-consuming
than receiving them [27]. As a consequence communication costs should be as low as possible, particularly on the
device side. The number of emitted bytes by the device and by the authenticator is given when available. Here, the
authenticator refers to the equipment authentication the device. The comparison of communication costs is presented
in Table 2.

Those results illustrate that PUF-based protocols have a lower communication cost than the TLS protocol. How-
ever this is not an absolute proof of the superiority of PUF protocols, as most of these protocols are still under
development. Nevertheless, this provides promising outlooks for constrained devices and lightweight authentication.

5.4. Time metrics and registration

Finally, time performances of the protocol were evaluated. The execution time was measured for each exchange
of the protocol, an exchange consisting of a request message and its associated response message: for instance a
CHALL message followed by a RES P message is considered an exchange. To measure these times, the Python
gateway software was instrumented to track the relevant intervals and to export the results for processing. The
average execution times are presented in Table 3.

Table 3
Authentication protocol’s time metrics

Phase Exchange Average time (s)

Registration INIT /RES P 1.1
CHALL/RES P 3.0 × 10−3

Authentication ID_REQ/ID_ANS 5.5 × 10−1

AUT H/AUT H 1.1

Secure refill REFILL_AUT H/REFILL_AUT H 1.1
CHALL/RES P 6.4 × 10−3

During the evaluation, it was noticed that the first exchange of the registration phase took a significant amount
of time compared to subsequent exchanges. This is explained by the initialization of the registration phase with the
initial INIT /RES P exchange. During this exchange the SRAM PUF is enabled, then the secret key is restored and
transmitted to the AES block (see Fig. 7). Finally, the challenge is enciphered by the AES cipher and the response
is sent back to the register. Once this initialization work is done, the following CHALL/RES P exchanges only do
the challenge encryption part, explaining the important time difference.
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Regarding the measures of the authentication phase, the AUT H/AUT H exchange is similar in terms of PUF
initialization to the INIT /RES P exchange which explains the similar execution time. The ID_REQ/ID_ANS ex-
change only requires the reconstruction of the ID using the SRAM PUF.

Regarding the secure refill phase, the mutual authentication takes the same amount of time to complete than the
classical authentication phase. The generation of new CRP however is slower than the registration phase, which is
explained by the use of encryption to ensure the confidentiality of the exchanges.

Time metrics were helpful to estimate the time needed to fully register a device. In that instance fully register
means generating enough authentication data to cover the whole device lifespan. With an hypothetical frequency
of one mutual authentication every minute between the device and the gateway, three device lifespans were eval-
uated. First, the required amounts of CRP were calculated and then, using the registration phase time metrics, the
registration times were evaluated. Those results are presented in Table 4.

Table 4
Total registration time depending on the device lifespan.

Device lifespan (y) Amount of CRP (M) Registration time (h)

1 2.1 1.8
5 11 8.8
10 21 18

Those results highlight the challenge represented by the registration phase which needs to generate in one time
the necessary authentication data for the whole device lifespan. Even for a one year lifespan, nearly 2 hours of
registration time are needed. This takes a long time, not compatible with smart device manufacturing process. This
implies as well an authentication register size of billions of records (millions of CRP for millions of devices), which
needs to be managed by a manufacturer or a trusted third-party. Even at the scale of a gateway with tens to hundreds
pervasive devices, this authentication data size could be an issue. It does not appear to be a realistic solution for
massive production.

With this proposal of a refill phase, it is not necessary to generate all the CRP during the initial registration
phase. Only a subset has to be generated, which is then handed over to the appropriate gateway to perform the
authentications and secure refills over time when it is needed. As a consequence, the initial registration phase can be
shortened to meet the industrial world constraints. To highlight this benefit, shorter device lifespans were considered
with the possibility to renew those lifespans using the secure refill phase. Keeping an authentication frequency of one
per minute, time evaluations of the initial registration and secure refill were computed with those shorter lifespans.
The results are presented in Table 5.

Table 5
Initial registration time and secure refill time depending on the device lifespan.

Device lifespan (d) Amount of CRP Registration time (s) Refill time (s)

1 1440 5.4 10.3
7 10× 103 31 65
30 43× 103 131 277

With this new approach, the device manufacturing extra-time for registration is below the minute for a lifespan of
up to a week. This looks acceptable for an industrial process. In addition, the device will be unavailable recurrently
for a short period of time during its field operation, in order to complete the secure refill phase. Around 10 seconds
per day or less than 5 minutes per month, which seems reasonable for non-critical pervasive applications deployed
in smart homes or smart cities environments. Those unavailability periods can even be synchronized with inactivity
periods of the corresponding environment, like sleeping hours in the case of smart homes, to limit their impact.

Another advantage of the refill phase is that it allows the user system to run in an autonomous way once the initial
handover is done. Indeed, after the gateway has recovered the first set of authentication data from the authentication
register, no further contact is needed between the register and the gateway. This can be really interesting for airtight
networks which are not connected to the Internet for instance. In such networks, the initial handover could be done
with a physical access to the gateway.
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6. Related Work

Research is active in the field of lightweight mutual authentication for IoT with various protocols being designed
and developed.

Barbareschi et al. present in [26] a mutual authentication protocol using a graph-based representation of PUF
systems. In their model, they consider the device and an additional equipment which is in charge of both the device
registration in a secure environment and the device authentication once deployed. They do not explicitly mention
when the registration and authentication should happen in the device life-cycle. Like this article protocol, their pro-
tocol requires the removal of used PUF responses to prevent replay attacks. However, the exhaustion of authenti-
cation data is only partially mentioned in their article. Their protocol does not feature a refill phase, they use only
the registration phase to generate the devices authentication data with potential storage constraints depending on
the number of managed devices. During the authentication phase, responses are exchanged in clear-text which can
allow modeling attacks against the PUF of the device. They implemented their protocol using a Field-Programmable
Gate Array (FPGA) as the device, a type of integrated circuit which can be configured using specific languages. As
a result, they present a hardware-based implementation which is faster but more difficult to update than this article
software-based implementation of the device side. Moreover, they used a 10 Gb data link to connect the FPGA with
the computer in charge of the authentication, which seems unrealistic in a constrained setup.

Lee et al. design in [28] a mutual authentication protocol for low-cost wireless sensors. Their protocol does not
require a large initial generation of CRP, however the registration is directly carried out by the gateway. The authors
specify that the registration is carried out before the network is deployed, which makes difficult the addition of new
sensors during the network lifespan. The protocol may become vulnerable to a Denial of Service (DoS) attack where
an attacker can send several requests to authenticate to a device which will automatically respond as the requests
are not authenticated. Their article does not include an implementation of the protocol.

Aysu et al. present a privacy-preserving mutual authentication protocol in [24]. To do so, they do not rely on
device identifiers but they use an exhaustive search in the authentication data of the devices. Their trust model
considers a set of devices and a trusted server. The server is in charge of enrolling the devices in a secure environment
before they are deployed, and then it is in charge of authenticating the devices over an insecure channel. No further
details are given on the life-cycle of the devices. Their protocol does not require the storage of large quantities of
authentication data and their removal, so they are not concerned by exhaustion issues. In their protocol the server
message to initiate the authentication is not authenticated itself, which can expose the devices to a DoS attack where
an attacker impersonating the server sends several authentication messages to a device. This will trigger on the
device the associated computations and the emission of response messages, increasing the energy consumption of
the device. They present three implementations of their protocol: two fully software-based using a 16-bit MSP430
microcontroller and one software-based with a hardware co-processor. Similarly to this article, they connected the
device to a computer with a serial link.

Van Herrewege et al. present in [29] a lightweight protocol for RFID readers and tags. They introduce the concept
of reverse fuzzy extractor to reduce the calculations on the device side. Their protocol is based on the exchange of
helper data, which are data used to ensure the reliability of PUF responses. As PUF responses are not transmitted
in clear-text, their protocol does not remove used responses. As a consequence, their protocol is not concerned
by the exhaustion of authentication data. Like this article, they consider three elements in their model: a RFID
tag embedding a PUF, an authentication register managed by a trusted party and a field equipment authenticating
the tag. They present the device implementation on a FPGA target but they do not mention the server side. Their
protocol is not integrated in the life-cycle of the tag as no detail is given about the timing of the registration or the
authentication. Like previous protocols, the message to initiate a device authentication is not authenticated itself. An
attacker can then send several messages to a device to have it generate and send back several helper data associated
with a PUF response. This weakness is corrected in a novel version of the protocol presented by Mael in [30], but
the life-cycle of the device is still not taken into account.
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7. Conclusion and Perspectives

For constrained devices to be successfully integrated in future smart and pervasive environments, protocols which
offer a balance between security and resources consumption is needed. This article presented the design of a new
protocol for authentication which meets this criteria. This protocol is lightweight in resources usage and enables
mutual authentication between constrained devices and a more resourceful equipment managing the devices. The
protocol key points are its clear definition of the involved actors, its integration into the life-cycle of devices from
manufacturing to deployment in pervasive environments and its new approach on authentication data management
supported by the refill procedure. This new protocol was implemented and validated using a hardware setup.

Using the hardware setup, the performances of the protocol were evaluated and compared to similar PUF-based
protocols as well as an embedded TLS library. The results show close performances to similar PUF-based protocols
and smaller memory and communication footprints than the TLS library. The protocol is secure against common
attacks like replay attacks or PUF modeling attacks. This is in line with the lightweight and security targets of the
protocol. Moreover, the refill feature of the protocol allows the initial registration to be performed in a reduced
timespan, facilitating its integration into industrial processes and commercial products.

Future work will focus on improving the protocol and make it available on different hardware platforms for
constrained devices. In addition, further work need to be done on the end-of-life management of the device to
be able, for instance, to give the device a second life in another pervasive environment. Some work is needed to
properly reset the device and to ensure the authentication data previously gathered cannot be used to compute new
valid authentication data. Finally, a future goal is to make the protocol available in a pervasive environment to secure
communications between pervasive applications and constrained devices which are part of this environment.
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