A Middleware for Secure Integration
of Heterogeneous Edge Devices

Arthur Desuert, Stéphanie Chollet, Laurent Pion and David Hély
Univ. Grenoble Alpes, Grenoble INP, LCIS
F-26000 Valence, France
{firstname.lastname } @Icis.grenoble-inp.fr

Abstract—Connected devices are being deployed at a steady
rate, providing services like data collection. Pervasive applica-
tions rely on those edge devices to seamlessly provide services
to users. To connect applications and edge devices, using a
middleware has been a popular approach. The research is
active on the subject as there are many open challenges. The
secure management of the edge devices and the security of the
middleware are two of them. As security is a crucial requirement
for pervasive environment, we propose a middleware architecture
easing the secure use of edge devices for pervasive applications,
while supporting the heterogeneity of communication protocols
and the dynamism of devices. Because of the heterogeneity in
protocols and security features, not all edge devices are equally
secure. To allow the pervasive applications to gain control over
this heterogeneous security, we propose a model to describe edge
devices security. This model is accessible by the applications
through our middleware. To validate our work, we developed
a demonstrator of our middleware and we tested it in a concrete
scenario.

Index Terms—IoT, Security, Middleware, Pervasive Applica-
tions, Modeling

I. INTRODUCTION

Connected devices are linked together using cloud infras-
tructures as well as fog and edge networks [1]. The resulting
data collection and remote control capacities can help the
development of pervasive applications fulfilling Mark Weiser’s
vision of the Invisible Computing [2], by providing useful
services embedded in the physical world.

To guarantee the successful adoption of pervasive applica-
tions, security is a key factor and several challenges remains
in this area [3]. For instance, the secure integration and
management of connected devices in pervasive applications is
challenging because of the heterogeneity and the dynamism of
those devices. The classical security requirements for a device
interacting with an application are:

« authentication, which allows the device to ensure it com-
municates with the expected application. Several levels of
authentication exist:

— none: authentication is not used. In that case, there
is no guarantee that either side of the communication
is the expected participant.

— one-way: the device authenticates the application as
genuine. The device trusts the application, however
the application has no guarantees about the device.

— mutual: both sides of the communication authenti-
cate the other side as genuine.

Authentication, one-way or mutual, often relies on:
— asymmetrical cryptography and a key-pair, or
— symmetrical cryptography and a shared secret.

« confidentiality, which guarantees that data sent by the
device to the application can be read only by the appli-
cation and not by unknown participants. Confidentiality
is mostly achieved using cryptography algorithms and
secrets.

« integrity, which guarantees that the application is able
to check if the data it receives is identical to data which
was emitted by the device. Integrity can be achieved using
hash functions, error correction codes, etc..

Security requirements are described from the device per-
spective, but the needs are symmetrical for the application.
Implementing security features to meet those requirements
in the application makes the development more complex
and error-prone. One popular approach to reduce application
complexity is the use of a middleware.

We propose in this article a secure fog middleware to
ease the secure integration of edge devices into cloud-based
pervasive applications. The middleware deals with the security,
the heterogeneity and the dynamism of edge devices. It hides
this complexity from the pervasive applications and it proposes
instead a consistent interface to easily use the devices capa-
bilities. Moreover, the middleware informs the applications
of the security requirements fulfilled or not by the devices.
This security transparency allows the applications to integrate
security criteria in their selection process.

The main contributions of this article are:

o the design of a secure middleware architecture easing

the development of secure pervasive applications,

« the design of a data model to describe the protocol and

hardware security features of connected devices,

« the development of a demonstrator and its validation

in a concrete scenario.

This article is organized as it follows: Section II examines
recent middleware solutions and their approach of security.
Section III gives an overview of the security heterogeneity
of protocols and hardware in pervasive environments. In Sec-
tion IV, we present our approach to build a secure middleware,
while Section V details the middleware architecture. Before
the conclusion, an implementation of our work and a validation
scenario are presented in Section VI.

II. RELATED WORKS

Research is active on the topic of IoT middleware as
underlined by Razzaque et al. in a 2016 survey which draws
up a list of sixty one IoT middleware [4]. Razzaque et al.
classify the middleware according to their design approach
like service-oriented middleware or agent-based middleware,
while mentioning that some middleware solutions combine
several designs. In the rest of the article, we will focus on
service-oriented middleware as it is the design we use in our
global approach presented in Section IV. We present a set of
recent middleware solutions for IoT with their main features
and their approach on security. In particular, we focused
on the management of the devices security and the security
of the middleware solution itself. We also examined if the
applications are informed of the deployed security features.

The Hydra middleware [5], currently known as LinkSmart',
is designed to ease the development of Ambient Intelligence
applications. The middleware uses a service-oriented approach
to provide interoperability between connected devices and
applications. It supports several protocols to communicate with
the devices, like ZigBee? or Bluetooth?. The description of the
devices is based on the OWL*, OWL-S® and SAWSDL? on-
tologies. The middleware interfaces for applications use Web
Services technologies such as the SOAP protocol [6]. Concern-
ing security, the middleware features a security layer which
takes into account security goals such as confidentiality and
authenticity. The security relies on Web Services mechanisms
enhanced by ontologies. It is not indicated if those mechanisms
are compatible with the WS-Security specifications [7], the
security standard for Web Services.

KASOM [8], for Knowledge-Aware and Service-Oriented
Middleware, is designed to manage Wireless Sensors and
Actuators Networks (WSAN) and to enable Service-Oriented
Computing in those environments. Wireless communication
protocols like ZigBee are supported to communicate with
the edge devices. The middleware relies on two key compo-
nents: Knowledge Management services and the Contextual
Model. Knowledge Management services manage the data
generated by heterogeneous device networks, while the Con-
textual Model semantically describes the network resources.
The available network services are offered by the middleware
using a REST approach to ease the communication between
conventional networks and WSAN. The middleware archi-
tecture features a security module dedicated to the internal
security management of the middleware, by enforcing access
control to the services for instance. The security features of the
communication with devices, like confidentiality and integrity,
are not detailed and it is not clear wether the applications have
access to security information about the services.

Uhttps://linksmart.eu/
Zhttps://csa-iot.org/all-solutions/zigbee/
3https://www.bluetooth.com/
“https://www.w3.org/TR/owl-overview/
Shttps://www.w3.org/Submission/OWL-S/
Shttps://www.w3.org/TR/sawsdl/

ubiREST [9] is an improved version of the ubiSOAP middle-
ware [10]. The goal of ubiSOAP is to manage several network
links between service producers, which are usually connected
objects, and service consumers, which are usually pervasive
applications. The middleware supports several network pro-
tocols, wired and wireless, such as Bluetooth and UMTS.
The goal of the middleware is to select the best available
network link to exchange messages between producers and
consumers respecting the Quality of Service threshold defined
by the consumer. The ubiSOAP middleware used the SOAP
protocol to offer its services, without mentioning the use of
WS-Security. The ubiREST middleware moves to a P-REST
architecture, defined as a refinement of the REST style.
Device security is briefly mentioned and appears to be part
of the Quality of Service metric. The selection of the security
features and their impact on the metric remain unexplained.
The internal security of the middleware is not mentioned.

In.IoT [11] is a middleware solution focused on easing
the registration of connected devices and on ensuring their
performance. In.loT uses a modular architecture and a service-
oriented approach to abstract the connected devices and to pro-
vide interoperability. The middleware supports the HTTP [12],
MQTT [13] and CoAP [14] protocols to communicate with the
devices. Security is also a key focus of the solution with the
implementation of security restrictions for the MQTT protocol
and the authentication of applications using the services. For
connected devices, the middleware mainly relies on credentials
authentication. They are generated during the device regis-
tration and then transmitted to the device through a network
link. However, the secure handling of those credentials by the
device is not detailed. Moreover, it is not precised wether the
pervasive applications are aware of this security when using a
service.

Table I summarizes for each middleware the features related
to the security of connected devices and wether the pervasive
applications using the middleware services are informed of the
security measures related to the services they use.

TABLE I
SECURITY IN MIDDLEWARE SOLUTIONS

Middleware | Device Security [Middleware Security
Hydra [5] Not indicated Application authentication
KASOM [8] Not indicated Not indicated
ubiREST [9] Not indicated Not indicated
In.JoT [11] Device authentication | Application authentication
Middleware L Security-Awareness of Applications
Hydra [5] Not indicated
KASOM [8] Not indicated
ubiREST [9] Low (Quality of Service)
In.IoT [11] Not indicated

From this review on IoT middleware solutions, we notice
that device and middleware security are not systematically
addressed and thus they remain open challenges in the do-
main. Moreover the middleware solutions which take devices

Thttps://www.3gpp.org/technologies/keywords-acronyms/103-umts

security into account often consider the security of the com-
munication link, but they rarely take into account the device
hardware security. Hardware security plays an important role
in secure communications and thus should be considered as
well when evaluating a connected device security. Lastly, the
diversity of communication protocols and hardware involved
in the IoT combined with the diversity of concrete security
mechanism creates heterogeneous security levels. Yet, we
notice the pervasive applications are rarely informed of this
underlying heterogeneity. This can lead to applications trusting
services with a weak security because the available security
indicators are not accurate enough. In the next section, we
show the diversity of protocols and hardware security to
support the need for more accurate security descriptions.

III. EDGE SECURITY

In this section, we first present a set of protocols used for
edge communication with their security features, and second
a set of hardware security mechanisms which can be deployed
on edge devices.

A. Protocol Security

We present current protocols used for communicating with
IoT devices, with a focus on their security features.

The Hypertext Transfert Protocol (HTTP) is a
protocol standardized by the Internet Engineering Task
Force (IETF) [12]. It allows the exchange of data between
two equipment following a client/server paradigm. HTTP is
a high level protocol and relies on lower network protocols,
such as TCP and Wi-Fi, to establish a connection with an edge
device. The protocol in itself does not offer security features
such as data confidentiality or host authentication. However,
it is often used with the Transport Layer Security (TLS) [15]
protocol which provides those security features. The
association of HTTP with the TLS protocol is commonly
called HTTPS. The TLS protocol supports the encryption
of exchanged data using several ciphers such as AES or
Chacha20, to ensure data confidentiality. It also supports
simple and mutual authentication mechanisms based on a
shared secret or X.509 certificates. TLS is also used by other
high level protocols such as MQTT [13] and CoAP [14] to
cover their security needs. The SOAP protocol [6], used for
instance by Web Services, can also benefit from TLS security
as it is often used over HTTPS in addition to the WS-Security
specification [7], its own security layer.

ZigBee is a wireless communication protocol defined by
the Connectivity Standards Alliance®. Devices communicating
with ZigBee are organized in networks. To join an existing
network, a device needs to recover a key named the Network
Key. Each ZigBee network has a dedicated Network Key. To
retrieve this key, several procedures are available [16]:

« the device can contact the equipment managing the net-

work, called the ZigBee Coordinator in ZigBee terminol-
ogy, to retrieve the Network Key. A predefined key is

8https://csa-iot.org/

often used to ensure the confidentiality of the exchange;
however this predefined key is publicly available in the
ZigBee specification which creates an attack vector [17].

e In ZigBee 3.0, the device and ZigBee Coordinator can
mutually authenticate using an install code. An install
code is a random secret assigned to the device during
its manufacturing. This code has to be shared with the
ZigBee Coordinator, which is done by a user or an
installer for instance. This secret is then used to derive
a shared key enabling authentication and confidentiality
between the new device and the ZigBee Coordinator.

« finally, the Network Key can be manually loaded into the
device by a user or an installer for instance.

ZigBee ensures the confidentiality and authentication of data
in transit with the use of the Advanced Encryption Standard
(AES) symmetric cipher in CCM* mode with keys of 128
bits [17]. ZigBee also ensures data integrity using a Message
Integrity Code (MIC) generated by the AES-CCM*.

Bluetooth Low Energy (BLE) is a wireless communication
protocol defined by the Bluetooth specification®. It is primarily
designed for IoT applications constrained in energy and which
only need to transmit small amounts of data [18]. BLE
supports several authentication levels. The level selected for a
given connection depends on the following parameters:

« the selection (or not) of the authentication option during
the negotiation of connection options.

o the input and output capabilities of each device. For
instance, the presence of a keyboard or a screen on the
devices.

Depending on the connection parameters, the exchanged
data can be ciphered to ensure confidentiality. To do so, BLE
uses the AES symmetric cipher in CTR mode with a shared
key of 128 bits. The key is generated during the connection.
Data integrity and authentication are ensured by Message
Authentication Codes (MAC) which are computed using the
AES cipher in CCM mode.

To summarize this overview of IoT communication proto-
cols, Table II presents the security features supported by those
protocols. All protocols support mutual authentication, data
confidentiality and integrity.

TABLE 11
SECURITY IN IOT PROTOCOLS.

Authentication levels L
Protocols None One-way Mutual Authentication means
HTTP(S) v v v Shared secret, certificate
Zigbee v v v Shared secret
BLE v v v User validation
Protocols | Confidentiality [Integrity
HTTP(S) Configuration dependent Configuration dependent
Zigbee Yes Yes
BLE Configuration dependent Configuration dependent

9https://www.bluetooth.com/learn- about- bluetooth/tech-overview/

This overview highlights the heterogeneous implementation
of common security requirements in several communication
protocols. Another key point is the recurrent presence of a
shared secret for authentication. This implies that this secret
needs to be stored by devices.

B. Edge Device Security

Using a secure protocol is not enough to guarantee the
security of a whole IoT solution. Section III-A highlights
the recurrent use of shared secrets in IoT protocols to au-
thenticate devices and/or ensure the confidentiality of data.
Security offered by those protocols mainly relies on the use
of standardized algorithms and the trust in a given secret. If a
secret is compromised, the security properties inherited from
this secret are compromised as well. Expected attributes of a
storage solution for secrets are the following:

« secure: the solution should protect the confidentiality of
stored secrets and prevent unwanted extraction attempts.

« resource-efficient: the solution should mobilize the most
limited hardware ressources to perform its task.

« low additional cost: the solution should be affordable
and accessible to even low-cost devices.

We reviewed current solutions which are used to store secrets.

1) Non-volatile memory: It is possible to store secrets
directly in non-volatile memory. As such memory is widely
available in embedded systems, it does not imply additional
cost. However, the security of this solution is often low.
This type of memory can be easily scanned by an attacker
who can extract secrets if they are stored in plaintext. One
countermeasure to such attack is to cipher the secret before
storing it, but it also requires to store the key used which
creates a circular problem.

2) Secure Element: It is a dedicated microprocessor chip
which is usually installed aside the main microprocessor of
a device, with communication ensured by a secure hardware
bus. A Secure Element (SE) is specifically designed to store
confidential data and to process cryptographic operations. It
includes sensors to detect intrusion attempts and to react
accordingly, by erasing the internal storage for instance. It
is also designed to be tamper proof against hardware attacks
such as power side channel or fault injection attacks. Those
security properties are often qualified by a certification author-
ity and must be compliant with security standards, such as the
Common Criteria (CC) for instance. While with SE, one can
reach a very high security level, it induces an extra cost to the
device in terms of components and engineering [19].

3) Trusted Execution Environment: Another solution for
secure storage is to use a microprocessor chip with embed-
ded security features like a secure enclave, which splits the
microprocessor in two distinct parts:

e a normal context, also named Rich Execution Environ-
ment (REE), where the main applications can run and
interact with the outside world, and

e a secure context, also named Trusted Execution Environ-
ment (TEE), where sensitive operations can be executed

and secrets securely stored, with very limited interactions
with the outside world.

Context switches can only happen in well-defined entry/exit
points to prevent illegal accesses. This solution can be easier
to implement but it is less secure than a SE because it does
not include antitampering protections [19].

4) Physical Unclonable Functions technology: It is a hard-
ware block which reacts to an input stimulus named the
challenge by emitting an output stimulus named the response.
Physical Unclonable Functions (PUF) [20] originality is that
its output not only depends on the challenge but also on some
intrinsic properties of the hardware components, such as the
geometry of its transistors. Because those properties mainly
depend on manufacturing process variations, it is statistically
highly unlikely or almost impossible to produce two identical
PUF, hence its unclonable property.

PUF circuits have some intrinsic security properties. First,
their unclonability which guarantees an almost-nil risk of du-
plication. Second, PUF are active circuits, thus no information
are available when the device or the PUF are powered down,
as opposed to non-volatile memories storing sensitive data.
Those properties make PUF circuits good candidates for a
secure storage solution with a reasonable integration cost.

To conclude, Table III highlights the diversity of storage
solutions and the heterogeneity of the security involved. This
allows connected device designers to pick the solution which
fits best the constraints and security needs of each project.
However, this heterogeneity must be taken into account and
properly managed by the IoT middleware designers to suc-
cessfully integrate various references of connected devices.
Pervasive applications should also be informed in an adapted
way of this heterogeneity, as it can be a meaningful criterion
when selecting a service.

TABLE III
COMPARISON OF SOLUTIONS FOR SECRET STORAGE.

Storage Solution | Security | Resource efficiency [Additional Cost
Non-volatile None High None
Memory

Secure Element High Medium Medium to High
TEE Medium Medium Medium
PUF Medium High Low

To achieve these main goals of managing the heterogeneous
security of connected devices and to allow the pervasive appli-
cations to select services based on their underlying security, we
present our middleware design approach in the next section.

IV. GLOBAL APPROACH

In this section, we present our global approach to ease the
secure integration of connected devices into pervasive appli-
cations while supporting the heterogeneity and the dynamism
of the devices.

We propose a new middleware solution deployed at the fog
level which eases the secure connection between the pervasive

applications and the connected devices. The middleware uses
Service-Oriented Computing (SoC) principles [21] to abstract
the connected devices heterogeneous capabilities as services
accessible through a uniform interface. The list of services
proposed by the middleware is updated dynamically. Moreover
our solution manages the security of the connected devices,
dealing with the heterogeneity of secure protocols and key
management to provide trustworthy services to the pervasive
applications. Together with the middleware, we propose a set
of data structures to concretely describe these security features
and to present them to the pervasive applications. The global
architecture of our solution is presented in Fig. 1.

Pervasive
applications

Cloud
Lists services Uses services
‘M - M\]
o Registry Service provider :
D » -
:D
‘L
‘E
‘W Actuator || Data
ﬁ Concrete descripti controller [cache
'E
: Searches
\ﬁ/ N——
A Registers /Y‘W
(ProtocolA) (Protocol B) Protocol]
proxy
.. Fog
Edge
Device 1 Device 2 Device i

~€«—>» Secure communication D Secure device |:| Unsecure device

Fig. 1. Global architecture.

Our middleware is composed of three main modules, as
illustrated by Fig. 1 :

o the protocol proxy module, which manages the com-
munication between the middleware and the connected
devices. This module can dynamically load or unload
submodules which act as proxies for a specific commu-
nication protocol (e.g, HTTPS, ZigBee...), managing the
protocol heterogeneity presented in Section III-A. Each
submodule implements and manages the security features
associated with its specific protocol. Those submod-
ules ensure the communication with the devices using
the appropriate security configuration depending on the
pervasive application requests via the service provider
module. They can also register new connected devices
and their services, if supported.

« the registry module, which allows pervasive applications
(i.e., service consumers) to list the services available
through the middleware and their description. The service
description is divided in two parts: an abstract part which

describes the service specifications and a concrete part
which holds the necessary information to contact the
service provider. The security description of the service
is also stored in the registry and split in a similar
manner (an abstract part and concrete one). The pervasive
applications have only access to the abstract description
to find the appropriate services. The concrete description
is used internally by the service provider module.

the service provider module, which manages the requests
of pervasive applications to access specific services. This
module is in charge of invoking the chosen service and
sending back a response to the application. The service
provider module separates the services in two types:
sensors and actuators. Sensor services are associated
to devices which send measures to the middleware.
Those measures are temporarily stored in the data cache
submodule and served by the corresponding services.
Actuator services are associated to devices which accept
control commands. Those devices are managed by the
actuator controller submodule which handles issues such
as concurrent access.

The middleware fog deployment and its service-oriented
architecture offer several advantages [1]:

it allows the integration of a wide range of devices,
including those which can communicate only on local
networks. Such devices would not be usable with cloud-
based solutions which require a connection to the Inter-
net.

it lowers the latency when interacting with the devices
compared to cloud-based solutions. This can be of great
value when controlling actuators for instance. This can
also improve the lifespan of the energy-constrained de-
vices by reducing their communication cost.

it reduces the exposure of the devices to remote
threats. The devices communicate with the middleware
solution through local networks which are less exposed
than worldwide networks such as the Internet. The mid-
dleware is in charge of establishing the secure commu-
nication with the remote applications, taking this charge
away from the devices.

it hides the heterogeneity of service protocols and secu-
rity mechanisms. Pervasive applications have only access
to the abstract descriptions. The abstract descriptions do
not contain details on the implementation. Consequently,
it facilitates the device integration in pervasive applica-
tions for developers.

it ensures a low-coupling between the pervasive applica-
tions and the services they use, which helps dealing with
the dynamism of the services. The pervasive applications
do not directly connect to the services, they only need to
have access to the abstract descriptions of the services.

Having presented the global architecture of our solution to
simplify the secure use of connected devices by pervasive
applications, we detail its main components in the next section.

V. MIDDLEWARE ARCHITECTURE

In the following sections, we present in details the core
modules providing the basic functionalities of the middleware.

A. Protocol Proxy Module

The protocol proxy module provides communication with
the edge devices. Its main goals are:

« to manage the heterogeneity of communication protocols,
allowing the integration of a wide range of edge devices

« to manage the heterogeneity of protocols security features

« to adapt various devices data format into the middleware
internal representation

To reach those goals, the module is divided into independent
submodules. Each submodule manages a specific communica-
tion protocol and its security features.

We defined a generic submodule architecture with a set of
interfaces and common data structures. This architecture is
illustrated in Fig. 2.

Interaction
with services

Description
of services

Security
I settings

Communication

Discovery

Data
collection

Registration

. Commands
of services

I Protocol-dependent [l Middleware interface

Fig. 2. Generic submodule architecture for protocol proxy.

The interfaces are divided in two types: protocol-dependent
and middleware. Protocol-dependent interfaces need to be
adapted to a specific protocol capabilities and may not be
fully implemented. For instance, a protocol could not feature
service discovery mechanisms. Those interfaces can accept
data in various formats. Middleware interfaces ensure the
communication with the middleware internals, the others core
modules for instance. They use a precise data format to ensure
the compatibility of the various middleware modules. Finally,
the architecture includes a protected space for storing the
security settings related to the protocol, the private key and
the associated certificate of a HTTPS interface for instance.

Using a generic architecture and defined interfaces simpli-
fies the development and the deployment of new submodules
to support additional and future protocols.

B. Register Module

The registry module is in charge of storing the data about
the services available through the middleware. It updates those
data as new services are registered or as they leave. The data
are stored using a data model designed to describe the services
and the security linked to those services. The model is divided
in two layers:

o the abstract description layer contains high level infor-
mation about a service and its security, like the service
interface or the supported security features. Such infor-
mation are useful to select a service.

o the concrete description layer contains the technical
details of a service and its security, like the address of the
service provider or the supported authentication means.
Such information are useful to securely use a service.

This model defines a clear separation of concerns between
the service selection which is done by the pervasive applica-
tions with the abstract layer, and the secure interactions with
the services which are carried on by the middleware with the
concrete layer. This separation of concerns already exists in
service-oriented technology [22] such as for Web Services [23]
thanks to the WSDL description [24], containing an abstract
part and a concrete one, and also a security description with
a WS-Policy profile [25]. However, this solution has been
implemented only for Web Services and not for other service
technologies such as UPnP [26], DPWS [27] or iPOJO [28].
WS-Policy has been rarely used by the developers due to the
complexity to create security profiles.

The service part of our model is generic and can be
extended. If necessary, more specific models [28], [22] can
be used under the condition that those models respect a set
of basic constraints, having a distinction between actuator
services and sensor services for instance.

For the security part, our goal is to propose a data model
to describe the concrete security features implemented by a
service provider. Fig. 3 gives an overview of this model.

| ProviderSecurityDescription |

0.1 1. 1. 0.1

1.+ |ProtocolSecurityDescription

HardwareSecurityDescription

-protocolName

1.-

1% 1.0 1.r
0..1 |provider 0.1

HostAuthentication | 0..1 DataConfidentiali l |r
- [
[

0.1 0.1

ity

tiality
|

[| | 1
I e 0 1

Fig. 3. Overview of the concrete security description model.

The ProtocolSecurityDescription class describes the secu-
rity features of the communication protocol, while the Hard-
wareSecurityDescription class describes the security imple-
mented at the device level. The model is structured around
the classical security requirements identified in the beginning
of this article: authentication, confidentiality and integrity.
Those requirements are reached using security primitives like
encryption or signature, and those primitives are concretely

implemented by secure algorithms (e.g., SHA or ECDSA),
specific hardware (e.g. PUF) and the manipulation of crypto-
graphic secrets (e.g., public/private keys).

For instance, Fig. 4 details the description of the authen-
tication requirements, represented by the HostAuthentication
class.

HostAuthentication StorageConfidentiality

1.7 1.7

1.7
TrustElement

SR e

PUF Keystore ConcreteStorage
-PUFType -label - 1
-CRPRegisterAddress -storeAddress 1.0 11 -ype
-CRPGenerationMethod | [-storePasswordHash

Key Certificate Password
-lisKeypair | | -/isValid -login
-keysize -emitter -passwordStrength
-truststoreAddress
-truststorePasswordHash

Fig. 4. Authentication part of the concrete security description model.

Authentication relies on the use of one or several trust
elements, represented by the TrustElement class. We con-
sider common authentication means such as password-based
authentication described by the Password class, with the
passwordStrength attribute evaluating the difficulty to guess
the password, and certificate-based authentication described by
the Certificate class, with the isValid attribute indicating if the
certificate is in its validity period or not. Those authentication
means are based on a secret which needs to be stored, usually
on the equipment itself. We describe this need with the
Keystore super class linked to the ConcreteStorage class. Thus,
we take into account the security of the storage to evaluate the
authentication strength. We also consider new authentication
technologies like PUF-based authentication, described by the
PUF class, which relies on the generation and exchange of
Challenge-Response Pairs (CRP) [29].

This concrete security description can vastly change from
one provider to another, due to the heterogeneity of protocol
and hardware security highlighted in Section III. Moreover,
the diversity of concrete security algorithms and hardware
makes the direct comparison of concrete security description
a challenging task. For those reasons, those definitions are not
shared with the pervasive applications. Instead, we developed
an abstract security description which indicates the status of
the security requirements (either supported or not) and which
features a security level. The model of this description is
illustrated by Fig. 5.

AbstractSecurityDescription

1. -securityLevel

T 1. 1.

provider (0.1 0..1 middleware 0.1 0.1

AbstractAuthenticationSupport | | AbstractConfidentialitySupport| | AbstractintegritySupport

Fig. 5. Abstract security description model.

The securityLevel attribute of the AbstractSecurityDescrip-
tion class is a numerical metric computed from the concrete
security description to evaluate the quality of the imple-
mented security mechanisms. The metric ranges from O to
100, 100 representing full confidence in the service security.
For instance, if the confidentiality relies on a state-of-the-
art algorithm and if the key used is adequately sized, the
security level is likely to be high. Conversely, if the algorithms
used are known to be outdated, vulnerable or if the secrets
are not securely stored, the security level will be low. Using
this metric, the pervasive applications can quickly estimate
the security of the services they use without diving into the
technical details.

C. Service Provider Module

The service provider module is used by pervasive appli-
cations to access the services listed by the middleware. The
module provides a uniform interface to the applications and
manages concurrent accesses to the services. It is divided in
two main parts: the data cache dedicated to sensor services
and the actuator controller dedicated to actuator services.

The data cache is a temporary storage for data associated
with the sensor service of a connected device. When a perva-
sive application invokes a sensor service, the service provider
module looks up in the service data cache. If a valid data is
present, the data is deleted from the cache and sent back to
the application. Else, the service is considered unavailable and
the request fails.

The actuator controller generates and sends commands
to the concrete actuator devices, using the protocol proxy
module. It handles and regulates the concurrent accesses to an
actuator service to respect the actuator limits.

VI. MIDDLEWARE IMPLEMENTATION AND EXAMPLE

In this section, we introduce the demonstrator developed
using the middleware architecture presented previously. We
also detail a use case illustrating the validity of our solution.

A. Implementation

To implement the middleware architecture, we used the Java
language and the Quarkus!® framework which are adapted to
the development of RESTful services and micro-services. This
is coherent with the modular architecture of our middleware
and with our goal to propose a set of uniform and secured
interfaces to the pervasive applications. The modules of our
architecture are implemented as micro-services and they offer

10https://quarkus.io/

to pervasive applications HTTP REST interfaces secured by
JWT tokens!'! on HTTPS protocol. The middleware is able
to authenticate the applications accessing the services and to
enforce access control on sensitive services (e.g. the services
to edit the configuration of some connected devices).

Our current demonstrator supports the HTTP and MQTT
protocols to interact with connected devices. Each protocol
is managed by a dedicated protocol proxy submodule with
support for several security features. For instance, the HTTP
proxy submodule supports simple and mutual authentication
using X.509 certificates, as well as data integrity and confi-
dentiality when the TLS protocol is used. The MQTT proxy
supports password authentication.

Next, we illustrate the use of our middleware with a
practical scenario.

B. Validation scenario

We consider a smart-home application which needs to detect
the presence of persons. Our middleware is deployed in a
house, illustrated in Fig. 6, with two connected devices which
provide the detection service.

M
A s
,Q 'i' DeviceA %
Bl R
.
Pervasive ? m
application e Device B

Fig. 6. Presence detection use case.

The devices use different detection technologies (e.g., in-
frared or ultrasound), yet they both provide the same high
level detectPresence service. Moreover the two devices have
heterogeneous security features, like different secure protocols
and a different authentication mean: a certificate for the
Device A and an embedded PUF for the Device B. Those
differences result in a unequal security level for the two
devices, the same being true for the provided services. We
will show how our middleware solution allows applications to
be aware of this difference during the service selection.

Assuming the middleware solution is already deployed in
the considered home, the first step is the registration of the
devices and their services. This step is performed by a trained
installer who sets up the devices, configures their security and
connectivity features, then generates the appropriate service
and security descriptions based on the models describes in
Section V-B. At the end of this step, the middleware manages
the secure connection with the devices and it offers their
services to pervasive applications. In our scenario, it means
the two devices are properly connected to the middleware and
their detectPresence service is registered.

https://datatracker.ietf.org/doc/html/rfc7519

The second step is the search for services. This step is
performed by a pervasive application. The application uses
the secure interface of the register module to enumerate
the available services. The register module uses the abstract
description layer of each service to build a list, it encodes this
list using the JSON format'? and sends it to the application.
The list presents for each service its name, its input parameters
and output values. Moreover, each service has one to several
security profiles defined by an identifier and a set of high
level security properties, like the support of data confiden-
tiality or the device authentication. Those security properties
are completed by a security level, a metric which evaluates
the overall security of the service as previously detailed in
Section V-B. These information can be integrated into a service
selection algorithm [30] used by the application to ensure the
selected service and profile respect the application security
needs. In our scenario, the smart-home application querying
the register interface for the available services gets a list
including only the detectPresence service with two security
profiles to choose from, corresponding to the two concrete
devices. Fig. 7 presents a snippet of this list in JSON format,
focusing on the security attributes.

[
{

"serviceName" :

[...]

"securityProfiles":

[

{

"id": "allO[...]18453"’
"securityLevel": 75,
"providerAuthentication":
"confidentiality": true,

[...]

"detectPresence",

true,

"id": "9ead[...]bb74",
"securityLevel": 60,
"providerAuthentication":
"confidentiality": true,

[...1]

true,

Fig. 7. Snippet of the services list.

Once a service is selected by a pervasive application, the
third and final step is the service invocation. The application
uses the secure interface of the service provider module to
transmit the service name and the desired security profile
identifier, and optionally the input parameters. The service
provider module handles all the necessary steps to retrieve the
service output, including the secure connection with connected
devices through their heterogeneous protocols. The application
gets either the service output or an error message if the
service is unavailable for instance. The application implements
only the communication protocol used by the middleware
interfaces, HTTPS in our demonstrator, and does not manage

2https://datatracker.ietf.org/doc/rfc8259

additional protocols dedicated to the connected devices such
as ZigBee in our scenario. This reduces the complexity of
applications and it allows the developers to focus on the
application added value. Moreover the handling of cryptog-
raphy secrets and protocols security features is centralized
by the middleware, avoiding its duplication in each pervasive
application. This also reduces the security risks linked to
potential implementation errors.

Through this scenario, we have validated a concrete use
case of our demonstrator based on the middleware architecture
proposed in this article.

VII. CONCLUSION AND PERSPECTIVES

To summarize, after a review of recent academic middleware
solutions followed by a review of IoT protocols and embedded
device security, we proposed a new middleware architecture
with an accent on security considerations to guarantee trust-
worthy services to pervasives applications. Following a secure
by design approach, our middleware manages seamlessly the
heterogeneity of IoT protocols and their security features to
securely connect to edge devices and to offer their services
to the pervasives applications. As edge device security can
not be reduced to the security of the communication protocol
only, we also propose a model to take into account both
the communication security and the edge device embedded
security. This model is fully integrated in our middleware
solution and is used to label the security of the services offered
by the middleware. Thus, the applications are aware of the
security features supported by a given service and they can
use this information as a selection criteria.

We have developed a demonstrator of our middleware using
the micro-service approach to validate its benefits. We have
tested our demonstrator in a concrete scenario.

In future works, we will focus on improving the security
description and in particular its generation. We aim at devel-
opping a model which can involve several actors, where a
connected device manufacturer will be able to propose a base
security description and local actors such as an edge device
installer will be able to personalize this description to fit the
local context and improve its relevancy. We will also work
on the design and implementation of logging functions in the
middleware to support traceability and to ease security audits.

AKNOWLEDGMENT

This project has received funding from the Trust Chair of
the Grenoble-INP Foundation.

REFERENCES

[1] B. Omoniwa, R. Hussain, M. A. Javed, S. H. Bouk, and S. A. Malik,
“Fog/Edge Computing-Based IoT (FECIoT): Architecture, Applications,
and Research Issues,” IEEE Internet of Things Journal, vol. 6, no. 3,
pp. 4118-4149, Jun. 2019.

[2] M. Weiser, “The Computer for the 21st Century,” ACM SIGMOBILE
Mobile Computing and Communications Review, vol. 3, no. 3, pp.
3-11, Jul. 1999. [Online]. Available: https://dl.acm.org/doi/10.1145/
329124.329126

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

Y. I. Alzoubi, V. H. Osmanaj, A. Jaradat, and A. Al-Ahmad, “Fog
computing security and privacy for the Internet of Thing applications:
State-of-the-art,” Security and Privacy, vol. 4, no. 2, Mar. 2021. [Online].
Available: https://onlinelibrary.wiley.com/doi/10.1002/spy2.145

M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Mid-
dleware for Internet of Things: A Survey,” IEEE Internet of Things
Journal, vol. 3, no. 1, pp. 70-95, Feb. 2016.

M. Eisenhauer, P. Rosengren, and P. Antolin, “HYDRA: A Development
Platform for Integrating Wireless Devices and Sensors into Ambient
Intelligence Systems,” in The Internet of Things, D. Giusto, A. Iera,
G. Morabito, and L. Atzori, Eds. New York, NY: Springer, 2010, pp.
367-373.

W3C, “SOAP Version 1.2 Part 1: Messaging Framework (Second
Edition),” Apr. 2007. [Online]. Available: https://www.w3.org/TR/
soapl12/

OASIS, “Web Services Security: SOAP Message Security 1.1,”
Feb. 2004. [Online]. Available: https://www.oasis-open.org/committees/
download.php/16790/wss-v1.1-spec-o0s-SOAPMessageSecurity.pdf

I. Corredor, J. F. Martinez, M. S. Familiar, and L. Lobpez,
“Knowledge-Aware and Service-Oriented Middleware for deploying
pervasive services,” Journal of Network and Computer Applications,
vol. 35, no. 2, pp. 562-576, Mar. 2012. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804511001111
M. Caporuscio, M. Funaro, C. Ghezzi, and V. Issarny, “ubiREST: A
RESTful Service-Oriented Middleware for Ubiquitous Networking,” in
Advanced Web Services, A. Bouguettaya, Q. Z. Sheng, and F. Daniel,
Eds. New York, NY: Springer, 2014, pp. 475-500. [Online]. Available:
https://doi.org/10.1007/978-1-4614-7535-4_20

M. Caporuscio, P.-G. Raverdy, and V. Issarny, “ubiSOAP: A Service-
Oriented Middleware for Ubiquitous Networking,” IEEE Transactions
on Services Computing, vol. 5, no. 1, pp. 86-98, Jan. 2012.

M. A. A. da Cruz, J. J. P. C. Rodrigues, P. Lorenz, V. V. Korotaev, and
V. H. C. de Albuquerque, “In.JoT—A New Middleware for Internet of
Things,” IEEE Internet of Things Journal, vol. 8, no. 10, pp. 7902-7911,
May 2021.

R. T. Fielding and J. Reschke, “Hypertext Transfer Protocol
(HTTP/1.1): Semantics and Content,” Internet Engineering Task Force,
Request for Comments RFC 7231, Jun. 2014. [Online]. Available:
https://datatracker.ietf.org/doc/rfc7231

Andrew Banks, Ed Briggs, Ken Borgendale, and Rahul Gupta, “MQTT
Version 5.0, Mar. 2019. [Online]. Available: https://docs.oasis-open.
org/mqtt/mqtt/v5.0/0s/mqtt-v5.0-0s.html

Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application
Protocol (CoAP),” Internet Engineering Task Force, Request for
Comments RFC 7252, Jun. 2014. [Online]. Available: https://
datatracker.ietf.org/doc/rfc7252

E. Rescorla, “The Transport Layer Security (TLS) Protocol Version
1.3,” Aug. 2018. [Online]. Available: https://tools.ietf.org/html/rfc8446

NXP, “Maximizing Security in ZigBee Networks,” p. 10,
Jan. 2017. [Online]. Available: https://www.nxp.com/docs/en/
supporting-information/MAXSECZBNETART.pdf

T. Zillner and S. Strobl, “ZigBee exploited -
The good, the bad, the ugly,” 2015. [Online].
Available: https://www.blackhat.com/docs/us- 1 5/materials/

us- 15-Zillner-ZigBee- Exploited- The- Good-The-Bad- And-The-Ugly.
pdf

J. Wu, Y. Nan, V. Kumar, D. J. Tian, A. Bianchi, M. Payer, and D. Xu,
“BLESA: Spoofing Attacks against Reconnections in Bluetooth Low
Energy,” 2020. [Online]. Available: https://www.usenix.org/conference/
woot20/presentation/wu

Global Platform, “The Trusted Execution Environment: Delivering
Enhanced Security at a Lower Cost to the Mobile Market,”
Jun. 2015. [Online]. Available: https://globalplatform.org/wp-content/
uploads/2018/04/GlobalPlatform_TEE_Whitepaper_2015.pdf

R. S. Pappu, “Physical one-way functions,” Thesis, Massachusetts
Institute of Technology, 2001. [Online]. Available: https://dspace.mit.
edu/handle/1721.1/45499

M. Papazoglou, “Service-oriented computing: concepts, characteristics
and directions,” in Proceedings of the Fourth International Conference
on Web Information Systems Engineering, 2003. WISE 2003., Dec. 2003,
pp. 3-12.

S. Chollet and P. Lalanda, “Security Specification at Process Level,” in
2008 IEEE International Conference on Services Computing, vol. 1, Jul.
2008, pp. 165-172.

(23]

[24]

[25]

[26]

[27]

W3C, “Web Services Architecture,” Feb. 2004. [Online]. Available:
https://www.w3.org/TR/ws-arch/

——, “Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language,” Jun. 2007. [Online]. Available: https:
/Iwww.w3.org/TR/wsdl/

——, “Web Services Policy 1.5 - Framework,” Sep. 2007. [Online].
Available: https://www.w3.org/TR/ws-policy/

UPnP Forum, “UPnP Device Architecture 2.0 Apr.
2020. [Online]. Available: https://openconnectivity.org/upnp-specs/
UPnP-arch-DeviceArchitecture-v2.0-20200417.pdf
OASIS, “Devices Profile for Web Services
2009. [Online]. Available:
wsdd-dpws-1.1-spec.html

Version 1.1,” Jul.
http://docs.oasis-open.org/ws-dd/dpws/

(28]

[29]

(30]

C. Escoffier, R. S. Hall, and P. Lalanda, “iPOJO: an Extensible Service-
Oriented Component Framework,” in IEEE International Conference on
Services Computing (SCC 2007), Jul. 2007, pp. 474—481.

G. E. Suh and S. Devadas, “Physical Unclonable Functions for Device
Authentication and Secret Key Generation,” in 2007 44th ACM/IEEE
Design Automation Conference. San Diego, California: Association
for Computing Machinery, Jun. 2007, pp. 9—14. [Online]. Available:
https://doi.org/10.1145/1278480.1278484

S. Chollet, V. Lestideau, P. Lalanda, Y. Maurel, P. Colomb, and
O. Raynaud, “Building FCA-Based Decision Trees for the Selection
of Heterogeneous Services,” in 2011 IEEE International Conference on
Services Computing, Jul. 2011, pp. 616-623.

